CHM151	Quiz 5a	25 Pts	Spring 2011	Name:	Key	
Molar Masses: C 12.011, H 1.01, O 16.00						

Formulas and Constants: PV = Nrt, $P_1V_1T_2=P_2V_2T_1$ $R=0.0821L \cdot atm/mol \cdot K = 62.4L \cdot torr/mol \cdot K$ SHOW WORK TO RECEIVE CREDIT.

1. (5Pts) A 4.92-L cylinder contains 7.42 g of methane, CH₄, at 2780 mmHg. What is the temperature of the gas in °C?

The gas in C?

$$P = 2.780 \text{ torr}$$
 $V = 4.92 \text{ L}$
 $V = 4.92 \text{ L}$
 $V = \frac{7.428}{16.058} \frac{\text{mol}}{16.058} = 0.462 \text{ mol}$
 $V = 4.74 \text{ L}$
 $V = 4.92 \text{ L}$
 $V = \frac{7.428}{16.058} \frac{\text{mol}}{16.058} = 0.462 \text{ mol}$
 $V = 4.74 \text{ L}$
 $V = 4.92 \text{ L}$
 $V = \frac{7.428}{16.058} \frac{\text{mol}}{16.058} = 0.462 \text{ mol}$
 $V = \frac{4.74}{16.058} = \frac{4.74}{16.$

2. (5Pts) The partial pressures of CH₄, N₂, and O₂ in a sample of gas were found to be 111 mmHg, 503 mmHg, and 629 mmHg, respectively. What is the mole fraction of nitrogen?

The volume of a sample of gas measured at 95.0°C and 1.00 atm pressure is 2.00 L. What must 3. (5Pts) the final temperature (in °C) be in order for the gas to have a final volume of 7.00 L at 1.00 atm

pressure?

$$P_1 V_1 T_0 = P_2 V_2 T_0$$

 $(1.000 \text{ m})(2.00 \text{ L}) T_0 = (1.00 \text{ ATm})(7.00 \text{ L})(95.0 + 273 \text{ K})$
 $T_0 = 1288 \text{ K}$
 $1288 - 273 = (1015 ° \text{ C})$

A 2.00-L glass soda bottle filled only with air is tightly capped at 21°C and 730.0 mmHg. If

the bottle is placed in water at 75°C, what is the pressure in the bottle?

P,
$$\chi$$
 $T_{0} = P_{2}$ χ T_{0}

$$(730 \text{ mm Hz}) (75 + 273 \text{ k}) = P_{2} (21 + 273 \text{ k})$$

$$(P_{2} = 864 \text{ mm Hz})$$

5.(5Pts) Determine the density of O₂ gas at 2°C and 1.91 atm. PV = DRT V= DRT = (1mol) (0.0821L-atm) (275X) D= 3/L P=1.91 atm $V = \frac{3}{100}$ V = 11.8 L V = 11.8 L V = 10.0821 L. atm/mol-k V = 11.8 L V = 11.8 L V = 11.8 LT = 2 + 273 = 275K

Molar Masses: C 12.011, H 1.01, O 16.00

Formulas and Constants: PV = Nrt, $P_1V_1T_2 = P_2V_2T_1$ $R = 0.0821L \cdot atm/mol \cdot K = 62.4L \cdot torr/mol \cdot K$ SHOW WORK TO RECEIVE CREDIT.

The volume of a sample of gas measured at 75.0°C and 1.00 atm pressure is 4.00 L. What must the final temperature (in °C) be in order for the gas to have a final volume of 9.00 L at 1.00 atm

2.(5Pts) A 2.00-L glass soda bottle filled only with air is tightly capped at 20°C and 728.0 mmHg. If the bottle is placed in water at 71°C, what is the pressure in the bottle?

$$\begin{array}{ll}
P_1 & \overline{1}_{23} &=& P_2 & \chi_4 & T_D \\
(728.0 \, m_M \, H_1) & (71+273 \, k) &=& P_2 & (20+273 \, k) \\
P_2 &=& (728.0 \, m_M \, H_2) & (71+273 \, k) &=& (855 \, m_M \, H_2) \\
P_2 &=& (20+273 \, k) &=& (855 \, m_M \, H_2)
\end{array}$$

The partial pressures of CH₄, N₂, and O₂ in a sample of gas were found to be 179 mmHg, 473 mmHg, and 629 mmHg, respectively. What is the mole fraction of nitrogen?

$$\frac{473}{(179+473+629)} = 0.369$$

4.(5Pts) What is the density of
$$O_2$$
 gas at 25°C and 1.41 atm?

 $P = 1.41 \text{ atm}$
 $V = \frac{1}{P} = \frac{1.41 \text{ atm}}{1.41 \text{ atm}}$
 $V = \frac{1}{P} = \frac{1.41 \text{ atm}}{1.41 \text{ atm}}$
 $V = \frac{17.35 \text{ L}}{17.35 \text{ L}}$
 $V = \frac{32.09}{17.35 \text{ L}} = \frac{32.09}{17.35 \text{ L}} = \frac{32.09}{17.35 \text{ L}}$

5.(5Pts) A 6.84-L cylinder contains 3.45 g of methane, CH₄, at 2570 mmHg. What is the temperature of the gas in °C? P = 2570 mm Hg $T = \frac{PV}{DR} = 2570 \text{ for } (6.842) \text{ mod } -K$ (6.242) mod -K

$$P = 2570 \text{ mm dg}$$

$$V = 6.84L$$

$$N = \frac{3.4581 \text{ mol}}{16.050} = 0.215 \text{ mol}$$

$$R = \frac{62.41 \text{ mol}}{16.050} = 0.215 \text{ mol}$$

$$1310 - 273 = 1040 ° C$$

$$T = ? K$$