CHM 151	Exam 2	100 Pts	Spring 2004	Name:	Key Lehite

1. The value of ΔH° for the reaction below is -126 kJ. How much heat (in kJ) is evolved when 2.00 mol of NaOH is formed in the reaction?

1 2n

K+)+ OH+ H++ (NO) -> HOHE)+K++NO)

$$2Na_2O_2(s) + 2H_2O(1) \rightarrow 4NaOH(s) + O_2(g)$$

2. What are the spectator ions in the reaction between KOH(aq) and $HNO_3(aq)$?

a) K⁺ and H⁺

e) -126

- b) H+ and OH-
- C)K⁺ and NO⁻³
- d) H+ and NO-3
- e) OH- only

3. Which of the following is an exothermic process?

- a) ice melting
- b) water evaporating
- c) heating soup
- d) condensation of water vapor

e) Ammonium thiocyanate and barium hydroxide are mixed at 25°C: the temperature drops.

- 4. The first law of thermodynamics states that
 - a) all spontaneous processes are accompanied by an increase in disorder
 - b) energy is conserved during any process
 - c) the entropy of a pure, crystalline substance at absolute zero is zero
 - d) the amount of work done during a change is independent of the pathway of that change
 - e) none of these
- $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$ $\Delta H^{\circ} = -3351 \text{ kJ}$ 5.

The reaction shown above is _____ and therefore heat is _____ by the reaction.

- a) endothermic, evolved
- b) endothermic, absorbed
- c) exothermic, evolved
 - d) exothermic, absorbed

6.	Substance	$\Delta H^{\circ}_{f}(kJ/mol)$
	H ₂ O(1)	-286
	NO (g)	90
	$NO_2(g)$	34
	HNO_3 (aq)	-207
	$NH_3(g)$	-46

Calculate ΔH_{rxn}° (in kJ) for the reaction:

$$4NH_3(g) + 50_2(g) \rightarrow 4NO(g) + 6H_2O(1)$$

 $\Delta H = \int \Delta H \rho v_2 \int \Delta H react$

- -1172
- b) -150
- c) -1540
- d) -1892

7. What is the concentration (M) of NaCl in a solution made by mixing 25.0 mL of 0.100 M NaCl with 50.0 mL of 0.100 M NaCl? (a) 0.100 (b) 0.0500 (c) 0.0333 (d) 0.0250 (e) 125	1
8. A strong electrolyte is one that completely in solution. a) reacts b) dissolves c) decomposes d) disappears e) ionizes	
9. The value of ΔH° for the reaction below is -790 kJ. The enthalpy change accompanying the reaction of 0.95 g of S is kJ.	
$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$	
a) 23 b) -23 c) -12 d) 12 e) -790 $0.9595 \text{ mot} -790 \text{ pt} = 11.7$ 32.069 2 mots	
10. Which hydroxides are strong bases? -1. Sr(OH) ₂ -2. KOH -3. NaOH -4. Ba(OH) ²	
a) 2 & 4 b) 2 & 3 c) 2, 3, & 4 d) 1, 2, 3, & 4 e) none of these is a strong base	
11. A chemical reaction that absorbs heat from the surroundings is said to be Ends and has a + value of ΔH at constant pressure. a) endothermic, positive b) endothermic, negative c) exothermic, negative d) exothermic, positive e) exothermic, neutral	
12. Consider the following thermochemical equations:	
# $fe_2o_3 + 3co \rightarrow 2Fe + 3co_2$ $\Delta H^\circ = -28.0 \text{ kJ}$ # $\Delta H^\circ = +12.5 \text{ kJ}$	
Calculate the value of $\Delta ext{H}^{\circ}$ (in kJ) for:	Ti.
$3Fe_2O_3 + CO \rightarrow CO_2 + 2Fe_3O_4$	色ワ
$3Fe_{2}O_{3} + CO \rightarrow CO_{2} + 2Fe_{3}O_{4}$ $3Fe_{2}O_{3} : #1 \times 3 \qquad 3Fe_{2}O_{3} : #7CO \rightarrow GFe + 9CO_{2} - 84-6$ $CO : Skip$ $CO : Skip$	0
c) -15.5 d) -109 e) +109 $Co_{2} : Skip$ $2F_{e_{3}}O_{4} : # 2x2 $	٥.
2 Feg Oy: # 2 X2 62 + 5-2	
$2F_{e_3}O_4$: # $2X_2$ $3F_{e_3}O_2 + CO \rightarrow CO_2 + 2F_{e_3}O_4 - 59.0$	大

