1. Balance the equations for the following reactions, using no fractional coefficients.

a. $C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$ b. $Na_3PO_4 + Ba(NO_3)_2 \rightarrow +$

2. According to the Brønsted–Lowry definition, which chemical species can function both as an acid and as a base?

(A) Cl^- (B) SO_4^{2-} (C) NH_4^+ (D) HCO_3^- (E) H_3O^+

3. In this reaction, which substances are bases according to the Brønsted-Lowry definition?

 $HC_2H_3O_2 + H_2O \rightleftharpoons H_3O^+ + C_2H_3O_2^-$

(A) $HC_2H_3O_2$ and H_2O (B) $HC_2H_3O_2$ and $C_2H_3O_2$ (C) H_2O and $C_2H_3O_2^-$ (D) H_3O^+ and $C_2H_3O_2^-$

- 4. A 6.80 g coin was dissolved in nitric acid and 6.21 g of AgCl was precipitated by the addition of excess sodium chloride, $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$ Calculate the percentage silver in the coin.
- 5. A 40.0 mL portion of a 0.10 M MgSO₄ solution contains how many grams of MgSO₄?
- 6. What mass of MgCl₂ is required to prepare 2.00 L of 0.550 M solution?
- 7. What mass of Na₂SO₄·10H₂O is required to prepare 500.0 mL of 0.20 M Na₂SO₄ solution?
- 8. What is the concentration of CH₃OH in 0.20 L of aqueous solution which contains 55 g CH₃OH?
- 9. To what volume in liters must 105 mL of hydrochloric acid, containing 47.5 g of HCl, be diluted to make a 1.05 M solution?
- 10. What volume of 0.100 M SO₃²⁻(*aq*) is needed to titrate 24.0 mL of 0.200 M Fe³⁺(*aq*)? $2Fe^{3+}(aq) + SO_3^{2-}(aq) + H_2O(l) \rightarrow 2Fe^{2+}(aq) + SO_4^{2-}(aq) + 2H^+(aq)$
- 11. In the reaction $3Ca(OH)_2(s) + 2H_3PO_4(aq) \rightarrow Ca_3(PO_4)_2(s) + 6H_2O(l)$ how many grams of Ca(OH)₂ are required to neutralize 10.0 L of 0.60 M H₃PO₄ solution?
- 12. If 26.32 mL of 0.100 M H₂SO₄ is exactly neutralized by 34.56 mL of NaOH solution, what is the molar concentration of the original base solution?
- 13. How many liters of CO₂ gas at STP can be obtained by completely burning one mole of C₃H₈? $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
- 14. If 11.2 L of NO₂(g) at STP reacted with water, how many moles of HNO₂ would form? $2NO_2(g) + H_2O(l) \rightarrow HNO_2(aq) + HNO_3(aq)$
- 15. What is the oxidation number of phosphorus in H_3PO_2 ?
- 16. Identify the pair of compounds having underlined atoms with the same oxidation number.
 - (A) $H_2\underline{S}O_4$ and $H\underline{Mn}O_4$ (C) $H\underline{Cl}O_3$ and $H\underline{N}O_2$ (B) $H\underline{Cl}O_4$ and $H_2\underline{Cr}_2O_7$ (D) $H\underline{N}O_3$ and $H_3\underline{P}O_4$
- 17. In this reaction, which substance behaves as the oxidizing agent? $Pb + PbO_2 + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O_4$
- 18. If oxygen gas and hydrogen gas are kept at the same temperature and pressure, what is the relationship of the average velocities of their molecules?

- 19. The Kelvin temperature of one liter of gas is doubled and its pressure is tripled, volume will then be_____?
- 20. A 10.0 cm³ container of helium is sealed at 22.0 °C and 1.00 atm pressure. What pressure would be exerted by the helium if the container were heated to 220 °C?
- 21. Four identical balloons are inflated to the same extent with the indicated gases. Which balloon will be the first to collapse?

(A) Ne (B) N_2 (C) O_2 (D) CH_4

- 22. If 6.60 g of a gaseous compound occupy a volume of 1.20 L at 27 °C and 0.967 atm, the molar mass of the compound is
 - (A) $109 \text{ g} \cdot \text{mol}^{-1}$ (C) $140 \text{ g} \cdot \text{mol}^{-1}$
 - (B) $123 \text{ g} \cdot \text{mol}^{-1}$ (D) $165 \text{ g} \cdot \text{mol}^{-1}$
- 23. Real gases are most like ideal gases at
 - (A) high pressure and high temperature.
 - (B) low pressure and low temperature.
 - (C) high pressure and low temperature.
 - (D) low pressure and high temperature.
- 24. The partial pressures of a gaseous mixture are given in the table. What is the mole percent of hydrogen?

		Partial Pressures
hydrogen	200 mmHg	
carbon dioxide	150 mmHg	
methane	320 mmHg	
ethylene	105 mmHg	

25. Given a mixture of gases: 1.00 g He, 14.0 g N₂ and 10.0 g NO. What is the total pressure (in atm) at 27.0 °C if the gases are confined in a 2.00 L container?

At the same temperature and pressure, CH₄ effuses

Molar Masses			
CH ₄	16. g·mol ^{−1}		
SO ₂	64. g·mol ^{-1}		

(A) one-half as fast as O_2 (B) two times as fast as O_2 (C) at the same rate as O_2 (D) one-fourth as fast as O_2

ANSWERS:

1. a. $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$ b. $2Na_3PO_4 + 3Ba(NO_3)_2 \rightarrow 6NaNO_3 + Ba_3(PO_4)_2$ 3. C 4. 68.7% 5. 0.48 g 6. 105 g 7. 32 g 8. 8.6M 9. 1.24 L 10. 34.0 mL 2. D 11. 390 g 12. 0.152 M 13. 67.2 L 14. 0.25 mol 15. +1 16. D 17.PbO₂ 18. move faster than the oxygen molecules 19. 2/3 L 20. 1.67 atm 21. D 22. C 23. D 24.25.2 25. 13.3atm 26. B