Name: _____

1. (2 Pts) Determine the oxidation number of each element in $K_3Fe(CN)_6$

K_____ Fe _____ C ____ N_____

- 2. (1 Pt) The oxidation number of Cr in $Cr_2O_7^{2-}$ is _____.
- 3. (2 Pts) Identify the elements that are oxidized and reduced in the following reaction. $KClO_3(aq) + 6HBr(aq) \rightarrow KCl(aq) + 3Br_2(l) + 3H_2O(l)$
 - _____is oxidized and ______is reduced
 - _____is th oxidizing agent and _____is the reducing agent
- 4. (2 Pts) What mass of $C_{12}H_{22}O_{11}$ (sucrose) is needed to prepare 255 mL of a 0.570 M solution of sucrose in water? Show your work.
- 5. (2 Pts) A 50.0 mL sample of $0.436 \text{ M} (\text{NH}_4)_2 \text{SO}_4$ is diluted with water to a total volume of 250.0 mL. a. What is the ammonium sulfate concentration in the resulting solution? Show work.
 - b. What is the ammonium ion concentration in the resulting solution? Show work.
- 6. (2 Pts) 25.0 mL of a 0.2450 M NH₄Cl solution is added to 55.5 mL of 0.1655 M FeCl₃. What is the concentration of chloride ion in the final solution? Show work.

7. (4 Pts) When 38.0 mL of $0.1250 \text{ M H}_2\text{SO}_4$ is added to 100. mL of a solution of PbI₂, a precipitate of PbSO₄ forms. The PbSO₄ is then filtered from the solution, dried, and weighed. If the recovered PbSO₄ is found to have a mass of 0.0471 g, what was the concentration of iodide ions in the original solution? You must first write a balanced equation and then show your work.

8. (3 Pts) 34.62 mL of 0.1510 M NaOH was needed to neutralize 50.0 mL of an H_2SO_4 solution. What is the concentration of the original sulfuric acid solution? You must first write a balance equation and then show all work.

(3 Pts) What volume (mL) of a 0.3428 M HCl(aq) solution is required to completely neutralize 23.55 mL of a 0.2350 M Ba(OH)₂(aq) solution? Write a balanced equation and show all work.

 10. (4 Pts) Zinc dissolves in hydrochloric acid to yield hydrogen gas: Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g) What mass of hydrogen gas is produced when a 7.35 g chunk of zinc dissolves in 500. mL of 1.200M HCl?