Name:	Class:	Date:	ID: A
-------	--------	-------	-------

EXAM 4 CHM1151 SPRING 2005

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

- 1. Convert 439 mm Hg to kPa. (1 atm = 760 mm Hg = 101.325 kPa)
 - 0.578 kPa
 - 7.50 kPa
 - 58.5 kPa 81.2 kPa
 - $3.29 \times 10^{3} \text{ kPa}$

2. At 0.966 atm, the height of mercury in a barometer is 734 mm. If the mercury was replaced with water, what height of water (in meters) would be supported at 0.966 atm? The densities of Hg and H₂O are 13.5 g/cm³ and 1.00 g/cm³, respectively.

734×10-3 m 13.5 = 9.91 m

439 mm Hg 101.325 kPa =

- 3.19 m 9.91 m
 - 13.0 m
 - 18.4 m
 - 29.2 m
- 3. At constant temperature, 10.0 L of N₂ at 0.983 atm is compressed to 2.88 L. What is the final pressure of N₂? P.V. = P.V.

 - 0.293 atm
 - 2.98 atm 3.41 atm
 - 28.3 atm

7,

KP2

- 4. If the pressure of a confined gas is tripled while its temperature remains constant, what change will be observed?
 - The volume of the gas will triple.
 - The volume of the gas will decrease to 1/3 its original value.
 - The density of the gas will decrease to 1/3 its original value.
 - The volume will remain unchanged and the velocity of the molecules will increase.
 - The volume will remain unchanged and the velocity of the molecules will decrease.
- 5. A balloon is filled with H₂ gas to a volume of 2.60 L at 27°C. The balloon is then placed in liquid nitrogen until its temperature reaches -125°C. What is the volume of the cooled balloon?
 - 0.780 L 0.934 L

1.28 L

- -125+273=148K

27+273=300K V= RUITO = (2.60L) (148K)

Accent P = Constant P TO (300K)

- 5.27 L 0.562 L
- 6. The pressure in a 10.0 L flask is 0.912 atm at 78°C. How many moles of gas are in the flask? (R = 0.08206 $L \cdot atm/mol \cdot K$
 - 0.111 mol
 - (b) 0.317 mol
 - 1.42 mol 3.16 mol d.
 - 241 mol

$$N = \frac{PV}{RT} = \frac{(0.912 \text{ atm})(10.0 \text{ K})}{(0.08206 \text{ Kiston})(78+272)}$$

Mo

Name	: Ny	ID: A
	7. Which of the following gases has the lowest density at 25°C and 5.0 atm?	
	b. O ₂ c. N ₂ d. CO ₂	
	 e. F₂ 8. A mass of 2.703 g of an unknown gas is introduced into an evacuated 5.00 L flask. If the pressure i is 0.914 atm at 78°C, which of the following gases might be in the flask? (R = 0.08206 L·atm/mol·F 	K)
	a. N_2 $P = 0.000$ $P = 0.15$ b. C_2H_2 $P = 0.914$ $P = 0.15$ c) NH_3 $V = 0.15$ d. HCI e. NO $V = 0.703$ $P = 0.15$	86 md
	0 At 208 K and 1.00 atm, what is the volume of a mixture of gases containing 0.12 mol Ne. 0.25 mol	He and
	0.30 mol N_2 ? ($R = 0.08206 \text{ L-atm/mol·K}$) a. 0.061 L $PV = 0$ RT b. 0.67 L c. 5.2 L d. 12 L e. 16 L	E/(2181)
	e. 16 L 10. A mixture of H ₂ and Ne is placed in a 5.00 L flask at 20°C. The partial pressure of the H ₂ is 1.4 atm partial pressure of the Ne is 2.1 atm. What is the mole fraction of H ₂ ?	
	a. 0.11 b. 0.40 c. 0.60 d. 0.67 $(1.4+2a)$	
	e. 1.5 11. Which of the following are postulates of kinetic-molecular theory of gases?	

- 1. The distance between gas molecules is large in comparison to their size.
 - 7 2. The velocity of a gas molecule is inversely proportional to its temperature.
- T 3. Gas molecules are in constant, random motion.
- 1 4. At a given temperature, all gases have the same average kinetic energy.
 - 1 and 4
 - b. 1, 2, and 4
 - (c.) 1, 3, and 4
 - 2 and 3
 - 3 and 4
- 12. Place the following gases in order of increasing average velocity at 25°C: Ar, Cl₂, CH₄, and HCl.
 - $CH_4 < Cl_2 < Ar < HCl$

Smallest is fastest

- 6 Cl2 < Ar < HCl < CH4 < by molen mass
- d. $HCl < Ar < Cl_2 < CH_4$
- All gas molecules have the same velocity at 25°C.

 13. Non-ideal behavior for a gas is most likely to be observed under conditions of
a. high temperature and high pressure.
b) low temperature and high pressure.
c. low temperature and low pressure.
d. standard temperature and pressure.
e. high temperature and low pressure.
 14. One way in which real gases differ from ideal gases is that the molecules of a real gas
a. have no kinetic energy.
b. occupy no volume.
are attracted to each other.
d. have positive and negative spins.
e. are always polar.
 15. Which one of the following substances will exhibit dipole-dipole intermolecular forces?
a. Kr
b. N ₂
$c. CO_2$
d. CCl ₄
a co < different en value
16. The following molecules are gases at room temperature: Ne, N ₂ , O ₂ , Cl ₂ , and SiH ₄ . Which one will have the
highest boiling point?
, NT
b. No
b. N ₂ c. O ₂ all are nonpolar, Cl ₂ is most massive
(d) Cl_2
e. SiH ₄
 17. Which intermolecular forces are present in SO ₂ (s)?
1. London dispersion 2. dipole-dipole 18 ve.
1. London dispersion
2. dipole-dipole
3. hydrogen bonding
a. 1 only
2. dipole-dipole 3. hydrogen bonding a. 1 only b. 2 only c. 3 only Pent
c. 3 only
d.) I and 2
e. 1 and 3
 18. The normal boiling point is defined as
a. the pressure of a gas when its temperature reaches 373.15 K.
the temperature at which the vapor pressure of a substance equals 1 atm.

c. the temperature at which water boils.

d. the pressure at which a liquid boils at 273.15 K.

e. the sum of the enthalpies of vaporization and fusion at 298 K.

19. In the unit cell below, element X is within the cell and element Y is at the corners. What is the formula for this compound?

- XY
- XY_2
- XY_4
- XY_8 d.
- X_2Y
- 20. A line drawn between which two points results in a phase transition from gas to liquid?

- A to B
- B to C
- E to B (c.)
- d. E to D
- B to A
- To prepare approximately 1 liter of a solution that is 4.75% by mass NaCl, one should
 - dissolve 4.75 g NaCl in water up to a total volume of 1.00 L.
 - dissolve 47.5 g NaCl in 1.00×10^3 g water.
 - dissolve 47.5 g NaCl in 952.5 g water.
 - dissolve 952.5 g NaCl in 47.5 g water.
 - dissolve 46.5 g NaCl in 1.00 kg water.
- 22. Which of the following aqueous solutions should have the lowest freezing point?

 - 1 m CaBr2 < gives 3 particles
 - c. 1 m NH₃
 - d. 1 m NaNO₃
 - 1 m C₆H₁₂O₆

- 23. What is the freezing point of a solution containing 5.663 grams naphthalene (molar mass = 128.2 g/mol) dissolved in 32.0 grams paradichlorobenzene? The freezing point of pure paradichlorobenzene is 53.0°C and the freezing point depression constant, $K_{\rm fp}$, is -7.10°C/m.
 - (a) 43.2°C
 - b. 47.0°C
 - c. 51.7°C
 - d. 53.0°C
 - e. 69.1°C
- ATF = Kf M = -7.10°C

5.663& mul 128.28

= 9,8°c

- 24. Avogadro's law states that equal volumes of gases under the same conditions of temperature and pressure have equal _____.
 - a. masses
 - b. numbers of molecules
 - c. molar masses
 - d. densities
 - e. velocities
- 25. What volume of O₂, measured at 27.2°C and 735 mm Hg, will be produced by the decomposition of 5.22 g KClO₃? (R = 0.08206 L·atm/mol·K)

- a. 0.0983 L
- b. 1.09 L
- (c) 1.63 L
- d. 199 L
- e. 133 L

5.22g KClO3 mel 3, mol O2 = 0.0639 mul O2 | 122,55g 2 mol kclO3

PV= NRT (0.0639 mod) (0.08206 Later) (300.2 kg)
V = P (735 mod.k) 1 wm (760 months)

V=1.63 L