CHM 152/54	Quiz #7	25 Pts	Fall 2004	Name:	Key	
					7	

Consider the following information for four sulfides:

CdS
$$3.6 \times 10^{-29}$$
 ZnS 4.9×10^{-18} CuS 8.7×10^{-36} PbS 8.4×10^{-28}

To saturated 1.0-L solutions of all the sulfides above, 100 mL of 0.01 M sodium sulfide is added. Which one of the following ions exists in lowest concentration at 25°C?

a.
$$Cd^{2+}$$
 b. Zn^{2+} c. Cu^{2+} d. Pb^{2+} e. S^{2-}

2. A saturated solution of PbCl2 is prepared by dissolving the solid salt in water. The concentration of Cl- in solution is found to be 0.032 M. Calculate the Ksp for PbCl2.

A 9.0 x 10⁻⁴ M MgCl₂ solution is gradually made more basic by adding sodium hydroxide. At what pH will magnesium hydroxide begin to precipitate? (K_{sp} of Mg (OH) $_2$ = 9 x 10-12.)

$$M_{g}(QH)_{2}(G) \ge M_{g}^{2+} + 20H^{-}$$
 $K_{SP} = [M_{g}^{2+}][0H]^{2}$
 $9 \times 10^{-12} = [9 \times 10^{-4}][0H]^{2}$
 $[0H^{-}] = 1 \times 10^{-4}$
 $PH = 10$

What is the molar solubility of Al (OH) 3 at 25°C? ($K_{\rm SP} = 5 \times 10^{-33}$.) Al (OH), (A) \gtrsim Al $^{3+}$ + 3°H \qquad $K_{\rm SP} = (Al^{3+})(OH)^{3}$

Al (QH),
$$(Q = Al)^{3} + 30H^{-1}$$
 $K_{SP} = (Al)^{3} + (Ol)^{3}$
 $K_{SP} = (X) [3X]^{3} = 27 \times 4$
 $K_{SP} = (X) [3X]^{3} = 27 \times 4$

for Fe (IO₃)₂ is 10^{-14} . Mix two solutions, one containing Fe³⁺ and the other 10² = If

 $K_{\rm sp}$ for Fe(IO₃)₃ is 10-14. Mix two solutions, one containing Fe³⁺ and the other 10₃-. at the instant of mixing, Fe³⁺ is 10^{-4} M and 10_3 is 10^{-5} M, which one of the following statements is true? a. A precipitate forms because $Q_{SD} > K_{SD}$. Fe $(I_{03})_3$ (s) Fe³⁺ + 3 I_{03}

A precipitate forms because $Q_{sp} > K_{sp}$.

A precipitate forms because Q_{Sp} < K_{Sp}.

Ksp = [Fat [IO]] No precipitate forms because $Q_{sp} > K_{sp}$. $Q_{50} = [10^{-4}] [10^{-5}]^3 = 1 \times 10^{-5}$ No precipitate forms because $Q_{\rm Sp}$ < $K_{\rm Sp}$. What is the molar solubility of MgF₂ in a 0.20 M NaF solution? $\frac{1}{2}$ for MgF₂ = 8.0 x 10⁻⁸.) None of these statements is true.

6. What is the molar solubility of MgF₂ in a 0.20 M NaF solution?

(K_{sp} for MgF₂ = 8.0 x 10⁻⁸.)

Mg F₂(s)

Mg F₂(s)

Mg F₂(s)

C

$$\begin{array}{c}
N_{3} \\
N_{4} \\
N_{5}
\end{array}$$
 $\begin{array}{c}
N_{3} \\
N_{5}
\end{array}$
 $\begin{array}{c}
N_{5} \\
N_{5}
\end{array}$