| CHM 152/54 | Quiz #7 | 25 Pts | Fall 2004 | Name: | Key | | |------------|---------|--------|-----------|-------|-----|--| | | | | | | 7 | | Consider the following information for four sulfides: CdS $$3.6 \times 10^{-29}$$ ZnS 4.9×10^{-18} CuS 8.7×10^{-36} PbS 8.4×10^{-28} To saturated 1.0-L solutions of all the sulfides above, 100 mL of 0.01 M sodium sulfide is added. Which one of the following ions exists in lowest concentration at 25°C? a. $$Cd^{2+}$$ b. Zn^{2+} c. Cu^{2+} d. Pb^{2+} e. S^{2-} 2. A saturated solution of PbCl2 is prepared by dissolving the solid salt in water. The concentration of Cl- in solution is found to be 0.032 M. Calculate the Ksp for PbCl2. A 9.0 x 10⁻⁴ M MgCl₂ solution is gradually made more basic by adding sodium hydroxide. At what pH will magnesium hydroxide begin to precipitate? (K_{sp} of Mg (OH) $_2$ = 9 x 10-12.) $$M_{g}(QH)_{2}(G) \ge M_{g}^{2+} + 20H^{-}$$ $K_{SP} = [M_{g}^{2+}][0H]^{2}$ $9 \times 10^{-12} = [9 \times 10^{-4}][0H]^{2}$ $[0H^{-}] = 1 \times 10^{-4}$ $PH = 10$ What is the molar solubility of Al (OH) 3 at 25°C? ($K_{\rm SP} = 5 \times 10^{-33}$.) Al (OH), (A) \gtrsim Al $^{3+}$ + 3°H \qquad $K_{\rm SP} = (Al^{3+})(OH)^{3}$ Al (QH), $$(Q = Al)^{3} + 30H^{-1}$$ $K_{SP} = (Al)^{3} + (Ol)^{3}$ $K_{SP} = (X) [3X]^{3} = 27 \times 4$ $K_{SP} = (X) [3X]^{3} = 27 \times 4$ for Fe (IO₃)₂ is 10^{-14} . Mix two solutions, one containing Fe³⁺ and the other 10² = If $K_{\rm sp}$ for Fe(IO₃)₃ is 10-14. Mix two solutions, one containing Fe³⁺ and the other 10₃-. at the instant of mixing, Fe³⁺ is 10^{-4} M and 10_3 is 10^{-5} M, which one of the following statements is true? a. A precipitate forms because $Q_{SD} > K_{SD}$. Fe $(I_{03})_3$ (s) Fe³⁺ + 3 I_{03} A precipitate forms because $Q_{sp} > K_{sp}$. A precipitate forms because Q_{Sp} < K_{Sp}. Ksp = [Fat [IO]] No precipitate forms because $Q_{sp} > K_{sp}$. $Q_{50} = [10^{-4}] [10^{-5}]^3 = 1 \times 10^{-5}$ No precipitate forms because $Q_{\rm Sp}$ < $K_{\rm Sp}$. What is the molar solubility of MgF₂ in a 0.20 M NaF solution? $\frac{1}{2}$ for MgF₂ = 8.0 x 10⁻⁸.) None of these statements is true. 6. What is the molar solubility of MgF₂ in a 0.20 M NaF solution? (K_{sp} for MgF₂ = 8.0 x 10⁻⁸.) Mg F₂(s) Mg F₂(s) Mg F₂(s) C $$\begin{array}{c} N_{3} \\ N_{4} \\ N_{5} \end{array}$$ $\begin{array}{c} N_{3} \\ N_{5} \end{array}$ $\begin{array}{c} N_{5}