

CHM 152 Exam 3 100 Pts Spring 2004 Name:

1. Given the following information

Half-reaction ϵ_{red}°

$$\text{Sn}^{4+}(aq) + 2e^{-} \rightarrow \text{Sn}^{2+}(aq)$$
 +0.154 V
 $\text{Fe}^{2+}(aq) + 2e^{-} \rightarrow \text{Fe}(s)$ -0.440
 $\text{Fe}^{3+}(aq) + e^{-} \rightarrow \text{Fe}^{2+}(s)$ +0.771
 $\text{Cr}^{3+}(aq) + 3e^{-} \rightarrow \text{Cr}(s)$ -0.74

determine the standard potential (in V) of a cell based on the reaction:

$$\operatorname{Sn}^{2+}(aq) + 2 \operatorname{Fe}^{3+}(aq) \rightarrow 2 \operatorname{Fe}^{2+}(aq) + \operatorname{Sn}^{4+}(aq)$$

- a. +0.46
- b. +0.62
- c. +1.39
- d. -0.46
- e. +1.21
- A reaction that is spontaneous, ______.
 - a. will be very rapid as written
 - b. will proceed as written without outside intervention
 - c. is also spontaneous in the reverse direction
 - d. has an equilibrium position that lies very far to the left
 - e. will occcur very slowly
- 3. Given the following table of thermodynamic data,

substance ΔH_f° S°

$$PCl_3(g)$$
 -288.07 kJ/mol 311.7 J/mol-K

PCl₃(1) -319.6 217

determine the normal boiling point (in °C) of PCl3.

- a. 3.00
- b. 333
- c. 273
- d. 0.333
- e. 59.9
- 4. How many grams of copper will be plated out by a current of 2.3 A applied for 25 minutes to a 0.50-M solution of copper(II) sulfate?
 - a. 1.8×10^{-2}
 - b. 2.2
 - c. 1.1
 - d. 0.036
 - e. 0.019

Page 2 Version 1

5. Consider the following table of thermodynamic data. All values are tabulated for 25°C .

Substance	$\Delta ext{G}^{f o}$ (kJ/mol)	S° (J/mol·K)
$C_2H_2(g)$	209	201
$C_2H_4(g)$	68	219
C ₂ H ₆ (g)	-33	230
H ₂ (g)	0	131
H ₂ O(g)	-229	189
C ₂ H ₅ OH(1)	-175	161

What is the value of ΔH° (in kJ) for the reaction described below? Assume the reaction is performed at 25°C.

$$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$$

- a. -173
- b. 236
- c. -311
- d. -248
- e. 149
- 6. How many electrons are involved in the following half-reaction when it is balanced?

$$s_4 o_6^{2-} \rightarrow s_2 o_3^{2-}$$

- a. 6
- b. 2
- c. 4
- d. 1
- e. 3

Page 3 Version 1

7. Consider the following table of thermodynamic data. All values are tabulated for 25°C.

Substance	$\Delta extsf{G}^\circ$ (kJ/mol) f	S° (J/mol•K)
C ₂ H ₂ (g)	209	201
$C_2H_4(g)$	68	219
C ₂ H ₆ (g)	-33	230
H ₂ O(g)	-229	189
C ₂ H ₅ OH(1)	-175	161

The value of ΔS° for the following reaction is -233 J/K at 25°C. What is the standard entropy of H₂(g) at 25°C?

$$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$$

- a. 131
- b. 204
- c. 102
- d. 262
- e. 111
- 8. Consider the following reaction at 25°C.

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$$

 $\Delta G^{\circ} = 91.2 \text{ kJ} \qquad \Delta H^{\circ} = 131.4 \text{ kJ}$

What is the value of ΔS° (J/K) for this reaction at 25°C?

- a. -135
- b. 1.6
- c. -1.6
- d. 135
- e. 223
- 9. Which substance is serving as the <u>reducing</u> agent in the following reaction?

$$Fe_2S_3 + 12HNO_3 \rightarrow 2Fe(NO_3)_3 + 3S + 6NO_2 + 6H_2O$$

- a. HNO3
- b. S
- $c.NO_2$
- d. Fe₂S₃
- e. H₂O

- 10. With thermodynamics, one cannot determine _____.
 - a. the speed of a reaction
 - b. the direction of a reaction
 - c. the extent of a reaction
 - d. in which direction a reaction is spontaneous
 - e. the temperature at which a reaction will be spontaneous
- 11. How many minutes will it take to plate out 2.19 g of chromium metal from a solution of Cr^{3+} using a current of 35.2 amps?
 - a. 5.77
 - b. 346
 - c. 115
 - d. 1.92
 - e. 17.3
- 12. Bromine can oxidize each of the metals below except

Substance	\mathbf{E}° (v)
Br ₂	1.09
Ag	0.80
Pt	1.20
Cu	0.34
Pd	0.83
Li	-3.05
a. Ag	
b. Pt	
c. Cu	

- d. Pd
- u. Fu
- e. Li
- 13. The standard reduction potentials in V for Zn^{2+} and Cu^{2+} are -0.76 and +0.34, respectively. What is the potential of the cell (in V) represented below?

$$z_n \mid z_n^{2+}(1.00 \text{ M}) \mid Cu^{2+}(0.100 \text{ M}) \mid Cu$$

- a. -1.14
- b. -0.42
- c. +1.07
- d. +1.10
- e. +0.42
- 14. The equilibrium constant for a reaction is 0.48 at 25°C. What is the value of ΔG° (kJ) at this temperature? (R = 8.314 J/K·mol)
 - a. 1.8
 - b. -4.2
 - c. 1.5×10^2
 - d. 4.2
 - e. More information is needed.

Page 5 Version 1

- 15. ΔS° will be positive for the reaction _____.
 - a. $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
 - b. $2NO_2(g) \rightarrow N_2O_4(g)$
 - c. $H^+(aq) + F^-(aq) \rightarrow HF(aq)$
 - d. $BaF_2(s) \to Ba^{2+}(aq) + 2F^{-}(aq)$
 - e. $2\text{Hg}(1) + O_2(g) \rightarrow 2\text{HgO}(s)$
- 16. Which one of the following types of elements is most likely to be good oxidizing agents?
 - a. alkali metals
 - b. lanthanides
 - c. alkaline earth elements
 - d. transition elements
 - e. halogens
- 17. Determine the value of ΔG° (kJ) for the following reaction at 25°C:

$$C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(1)$$

Substance	$\Delta extsf{G}^{\circ}$ (kJ/mol)	S° (J/mol·K)
C ₂ H ₂ (g)	209	201
$C_2H_4(g)$	68	219
$C_2H_6(g)$	-33	230
H ₂ (g)	0	131
H ₂ O(g)	-229	189
C ₂ H ₅ OH(1)	-175	161

- a. 122
- b. -472
- c. -122
- d. -14
- e. -175
- 18. E° for the following reaction is 0.13 V. What is the value of ΔG° (in kJ) for the reaction? (F = 96,500 J/V·mol)

$$Pb(s) + 2H^{+}(aq) \rightarrow Pb^{2+}(aq) + H_{2}(g)$$

- a. -25
- b. 25
- c. -12
- d. 12
- e. -50

19. Consider the reaction: $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$

Given the following table of thermodynamic data,

s° substance Δ H $_{\mathsf{f}}^{\circ}$

 $NH_3(g)$ -46.19 kJ/mol192.5 J/mol-K

HCl(q) -92.30 186.69 $NH_4Cl(s)$ -314.4 94.6

determine the value of K for the reaction at 25°C.

- b. 9.3×10^{15}
- c. 8.4×10^4
- d. 1.1×10^{-16}
- e. 1.4×10^{8}
- 20. _____ is the oxidizing agent in the reaction below.

$$\text{Cr}_2\text{O}_7^{2-} + 6\text{S}_2\text{O}_3^{2-} + 14\text{H}^+ \rightarrow 2\text{Cr}^{3+} + 3\text{S}_4\text{O}_6^{2-} + 7\text{H}_2\text{O}$$

- a. $Cr_2O_7^{2}$ -
- b. $S_{2}O_{3}^{2}$ -
- c. H+
- $d. Cr^{3+}$
- e. S_406^{2}
- 21. The process of _____ causes a decrease in the entropy of the system.
 - a. boiling water to form steam
 - b. dissolution of solid KCl in water
 - c. mixing of two gases into one container
 - d. freezing water to form ice
 - e. melting ice to form water
- 22. When ammonium chloride dissolves in water the temperature of the solution is less than that of the original water sample. Thus, we know that ΔH is _____ and that ΔS is _____. a. negative, negative

 - b. positive, positive
 - c. negative, positive
 - d. positive, negative
 - e. negative, zero

Page 7 Version 1

23. The standard free energy change for the reaction below at 25°C is kJ.

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

Substance	Δ Hf $^{\circ}$ (kJ/mol)	S° (J/mol·K)
SO ₂ (g)	 -297	249
O ₂ (g)	0	205
SO3 (g)	-395	256

- a. -196
- b. -191
- c. -5
- d. -139
- e. More data is needed.
- 24. Given the following information

Half-reaction
$$\operatorname{\epsilon_{red}^{\circ}}$$
 $\operatorname{Sn^{4+}}(aq) + 2e^{-} \to \operatorname{Sn^{2+}}(aq) + 0.154 \text{ V}$
 $\operatorname{Fe^{2+}}(aq) + 2e^{-} \to \operatorname{Fe}(s) -0.440$
 $\operatorname{Fe^{3+}}(aq) + e^{-} \to \operatorname{Fe^{2+}}(s) +0.771$
 $\operatorname{Cr^{3+}}(aq) + 3e^{-} \to \operatorname{Cr}(s) -0.74$

which of the following reactions will occur spontaneously as written?

- a. 3 Fe³⁺(aq) + Cr³⁺(aq) \rightarrow Cr(s) + 3 Fe³⁺(aq)
- b. $2 \text{ Cr}^{3+}(aq) + 3 \text{ Sn}^{2+}(aq) \rightarrow 3 \text{ Sn}^{4+}(aq) + 2 \text{ Cr}(s)$
- c. $\operatorname{Sn}^{4+}(aq) + \operatorname{Fe}^{2+}(aq) \rightarrow \operatorname{Sn}^{2+}(aq) + \operatorname{Fe}(s)$
- d. $Sn^{2+}(aq) + Fe^{2+}(aq) \rightarrow Sn^{4+}(aq) + Fe^{3+}(aq)$
- e. 2 $Cr(s) + 3 Fe^{2+}(aq) \rightarrow 3 Fe(s) + 2 Cr^{3+}(aq)$
- 25. Calculate ΔS° for the reacation 2C(diamond) + O₂(g) \rightarrow 2CO(g) at 25°C, given that S° at 25°C for O₂(g), CO(g) and diamond are 205.0-, 197.9-, and 2.43-J/K-mol, respectively.
 - a. -185.9
 - b. +185.9
 - c. -9.5
 - d. + 9.5
 - e. -195.7

Page 1 Version 1

- 1. b 2. b
- 3. е
- 4. c
- 5. c
- 6. b
- 7. 7. a 8. d
- 9. d 10. a
- 11. a 12. b

- 13. c 14. a 15. d 16. e 17. d

- 17. d 18. a 19. b 20. **b** 21. d 22. b 23. d

- 24. e 25. b