ANSWERS AT END

- 1. The gas phase reaction A + B \rightarrow C has a reaction rate which is experimentally observed to follow the relationship Rate = $k[A]^2[B]$. The overall order of the reaction
- 2. The units of the rate constant for a second order reaction can be
- 3. A reaction is first order in X and second order in Y. Tripling the initial concentration of X and cutting the initial concentration of Y to three-fourths of its previous concentration at constant temperature causes the initial rate to ______ by a factor of ______.
- 4. Consider the following rate data for the reaction below at a particular temperature.

 $2A + 3B \rightarrow Products$

Experiment	Initial [A]	Initial [B]	Initial Rate of Loss of A
1	0.10 M	0.30 M	$7.20 \times 10^{-5} M \cdot s^{-1}$
2	0.10 M	0.60 M	$1.44 \times 10^{-4} M \cdot s^{-1}$
3	0.20 M	0.90 M	$8.64 \times 10^{-4} M \cdot s^{-1}$

The reaction is _____ order in A and ____ order in B.

				Initial Rate of
Trial	Initial [A]	Initial [B ₂]	Initial [C]	Formation of BC
1	0.20 M	0.20 M	0.20 M	$2.4 \times 10^{-6} M \cdot min^{-1}$
2	0.40 M	0.30 M	0.20 M	$9.6 \times 10^{-6} M \cdot min^{-1}$
3	0.20 M	0.30 M	0.20 M	$2.4 \times 10^{-6} M \cdot min^{-1}$
4	0.20 M	0.40 M	0.40 M	$4.8 \times 10^{-6} M \cdot min^{-1}$

- 6. The decomposition of dimethylether at 504°C is first order with a half-life of seconds. What fraction of an initial amount of dimethylether remains after 4710 seconds?
 - 7. The gas phase reaction $3C + 2D \rightarrow E + F$ obeys the rate-law expression Rate = K[D] and has a half-life of 0.860 s⁻¹. If 2.00 mole of D is injected into a 1.00-L container with excess C, what concentration of D remains after 1.50 seconds?
 - 8. The decomposition of dinitrogen pentoxide obeys the rate-law expression Rate = $0.080~\text{min}^{-1}~[\text{N}_2\text{O}_5]$. If the initial concentration of N_2O_5 is 0.30~M, what is the concentration after 2.6 minutes?

Consider the following proposed mechanism. If this mechanism for the 9. overall reaction were correct, and if k_1 were much less than k_2 , then the observed rate law would be

$$2A \xrightarrow{k_1} C + I$$

$$I + B \xrightarrow{k_2} C + D$$

Consider the reaction below and its observed rate law expression. 10. Which proposed mechanisms are consistent with the rate law expression?

$2NO_2 \rightarrow 2NO$	+	02	$Rate = k[NO_2]^2$
-------------------------	---	----	--------------------

I.
$$\begin{array}{c} \text{NO}_2 + \text{NO}_2 \longrightarrow \text{N}_2\text{O}_4 \\ \text{N}_2\text{O}_4 \longrightarrow \text{N}_2 + 2\text{O}_2 \\ \text{N}_2 + \text{O}_2 \longrightarrow 2\text{NO} \end{array} \qquad \begin{array}{c} \text{slow} \\ \text{fast} \\ \text{fast} \\ \text{2NO}_2 \longrightarrow 2\text{NO} + \text{O}_2 \end{array} \qquad \text{overall}$$

II.
$$NO_2 \rightarrow N + O_2$$
 slow $NO_2 + N \rightarrow N_2O_2$ fast $N_2O_2 \rightarrow 2NO$ fast $N_2O_2 \rightarrow 2NO + O_2$ overall

III.
$$NO_2 \rightarrow NO + O$$
 slow $O_1 \rightarrow NO_2 \rightarrow NO + O_2$ slow fast $O_2 \rightarrow O_2 \rightarrow O_3 \rightarrow O_4 \rightarrow O_4$

- Calculate the activation energy of a reaction if the rate constant is $0.75~\mathrm{s}^{-1}$ at 11. 25° C and 11.5 s^{-1} at 75° C.
- The specific rate constant, k, for a reaction is $2.64 \times 10^{-2} \text{ s}^{-1}$ at 25°C , and the 12. $2 \frac{k_2}{k} = \frac{Eu}{k} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$ activation energy is 74.0 kJ/mol. Calculate k at 50°C .

ANSWERS:

- 1. is third
- 3. increase, 1.69
- 5. rate = $k[A]^2[C]$
- 7. 0.60 M
- 9. rate $=k_1[A]^2$
- 11. d) 47.1 kJ

- 2. $M^{-1}s^{-1}$
- 4. second, first
- 6. 1/8
- 8. 0.24 M
- 10. I
- 12. c) 0.266 s^{-1}