CHM 152/54 Quiz #2 25 Pts Spring 04 Name:

rate = k rate = k[A] rate = k[A]² [A]_t = -kt + [A]₀ $\ln[A]_t$ = -kt + $\ln[A]_0$

 $1/[A]_t = kt + 1/[A]_0$ $t_{1/2} = [A]_0/2k$ $t_{1/2} = 0.693/k$

 $t_{1/2} = 1/k[A]_0$

 $ln(k_2/k_1) = (E_1/R)(1/T_1 - 1/T_2)$ R=8.314 J/(mol•K)

1. Determine the rate law and the rate constant that corresponds to the data shown for the following reaction? $2A + B \rightarrow C$

	Exo.	Initial [A]		Initial [B]	Initial rate	
d.		0.015		0.022	0.125	
: i		0.030		0.044	0.500	
, · ·	이렇지 말했다. 3루이를 하고 있다.	0.060		0.044	0.500	
		0.060		0.066	1.125	į

General form: rate = A[A] [R] 4

$$\frac{(A)^{2}}{(A)^{3}} = \frac{1.125}{0.506} = \frac{1.030}{0.506}$$

$$2.25 = \frac{1.030}{0.506}$$

$$0.506 = 0.0441$$

$$2.25 = (1.5)^{9}$$

$$ln 2.25 = 9 ln 1.5$$

$$4 = 2$$

the with bydrogen to form nitrous oxide, and water. Use the following data to de

$$2NO + H_2 \rightarrow N_2O + H_2O$$

rate law for the reaction.

Expt. #	[NO] _o	[H ₂] _o	Infinit.	
1	0.021	0.065	1.46 MA	rin .
2	0.021	0.260	1.46 M/s	
, , , , , , , , , , , , , , , , , , ,	0.042	0.065	5.84 M/s	100000000000000000000000000000000000000
A. rate = k	<u>u</u>	FALT	- 東にル	UJ LIFE

P: rate = $k[NO]^2$

C. rate = $k[NO][H_2]$

D. rate = $k[NO]^2[H_2]$ E. rate = $k[NO]^2[H_2]^2$

for DNOT 2 - Exp 3 F PART

rate = & [mo]

At 25°C, the rate constant for the first-order decomposition of a pesticide solution is 3. 6.40×10^{-3} min⁻¹. If the starting concentration of pesticide is 0.0314 M, what concentration will remain after 62.0 min at 25°C?

$$e^{-3.8577} = 0.0211 M$$

For the overall chemical reaction shown below, which one of the following statements can you rightly assume?

$$2\mathrm{H}_2\mathrm{S}(\mathsf{g}) + \mathrm{O}_2(\mathsf{g}) \rightarrow 2\mathrm{S}(\mathsf{s}) + 2\mathrm{H}_2\mathrm{O}(\mathsf{l})$$

- A. The reaction is third-order overall. B.
 - The reaction is second-order overall.
 - The rate law is, rate = $k[H_2S]^2$ [O₂].
- The rate law is, rate = $k[H_2S][O_2]$.
- The rate law cannot be determined from the information given.
- The units for a first-order rate constant are
 - A. M/s
- B. 1/M•s
- C. 1/s
- D. M²•s
- E. None of the

$$\frac{M}{S} = \bigcirc M$$

- 6. The reaction $A + 2B \rightarrow$ products was found to follow the rate law: rate = $k[A]^2[B]$. Predict by what factor the rate of reaction will increase when the concentration of A is doubled and the concentration of B is tripled, and the temperature remains constant
- B. 6

- E. None of the above.

rate - A[2]2[3]