

- 2. A reaction was found to be second order in carbon monoxide concentration. The rate of the reaction ______ if the concentration of carbon monoxide is doubled with everything else kept the same.

 a. doubles
 b. remains unchanged
 c. triples
 d) increases by a factor of 4
 e. is reduced by a factor of 2.
- 3. The rate law of a reaction is rate = $k[A]^x$. The units of k, if the reaction is second order in A, are ______.

- 4. A reaction was found to be third order in A. Increasing the concentration of A by a factor of 3 will cause the reaction rate to
 - a. remain constant
 b increase by a factor of 27
 - c. increase by a factor of 9
 - d. triple
 - e. decrease by a factor of the cube root of 3

rate =
$$k \left[A\right]^3$$

$$\left(3\right)^3 = 27$$

Using the information below, the rate constant for the following 5. reaction is $M^{-1}s^{-1}$.

	A + B → P			• .
Experime	ent		Initial	rito= branx (B)&
Number	[A] (M)	[B] (M)	Rate (M/s)	rate = R[A]^ [B]
1	0.273	0.763	2.83	
2	0.273	1.526	2.83	. 4
3	0.819	0.763	25 47 .	to does not change
(a) 38.0	for B: from E,	xp 1+2 4=0	since ru	
Б. 0.278	- Inches	163 2547	10-819	1 \ rate=RL
c. 13.2	for A: From Exp	142 45.47	= =	2.83
d. 42.0		2.83	(0, 21)	$k = \frac{1}{(0.273)^2}$
e. 2.21		2.03	~ 🗙 🔒	(0.213)
		9 =	= 3 X=	2 1 b = 37 97

The rate constant for a particular reaction is $1.3 \times 10^{-4} \text{M}^{-1} \text{s}^{-1}$ at 100°C , and $1.1 \times 10^{-3} \text{M}^{-1} \text{s}^{-1}$ at 150°C . What is the overall order of the 6.

reaction? a. 1 b. 0	C + 0	rate = & [A)
a. 3	from unus;	$\frac{M}{1} = \frac{M}{M} = \frac{M}{M}$
e. 4		5 /15 /

The rate constant for a particular reaction is $1.3 \times 10^{-4} \text{M}^{-1} \text{s}^{-1}$ at 150°C, and 1.1 \times 10⁻³M⁻¹s⁻¹ at 200°C. What is the energy of activation

for this reaction at 250°C?
a. 132
$$lm(\frac{1.3 \times 10^{-9}}{1.1 \times 10^{-3}}) = \frac{E_a}{8.314} \frac{1}{1.1 \times 10^{-3}} = \frac{E_a}{8.314} \frac{1}{1.1 \times 10^{-3}} = \frac{E_a}{8.314} \frac{1}{1.1 \times 10^{-3}} = \frac{E_a}{1.1 \times 10^{-3}} = \frac{1}{1.1 \times 1$$

8. The reaction $CH_3-N \equiv C \rightarrow CH_3-C \equiv N$

is a first-order reaction. At 230.3°C, $k = 6.29 \times 10^{-4} \text{ s}^{-1}$. If

[CH₃-N=C]₀ is 0.00100 M, [CH₃-N=C] in M after 1.000 × 10³ s is

(a)
$$5.33 \times 10^{-4}$$
b. 2.34×10^{-4}
c. 1.88×10^{-3}
d. 4.27×10^{-3}
e. 1.00×10^{-6}

$$ln [A]_t = -6.29 \times 10^{-9}$$

$$ln [A]_t = -7.5367...$$

$$ln[A]_{t} = -7.5367...$$

 $[A]_{t} = e^{-7.5367...} = 5.33 \times 10^{-9} M$

9. The rate constant for a second-order reaction is $0.13~\mathrm{M}^{-1}\mathrm{s}^{-1}$. If the initial concentration of reactant is 0.26 mol/L, it takes

	s for	the	concentration	to	decrease	to 0	.13	mol/L	
a. 0.017	1		$A + \bot I$						
b. 0.50	[A]	=	JRC T FAT					_	_
c. 1.0		* .	2170			+		29	6
(d) 30	_]	- 1	(13) t	_ 1		C		<i>x</i> ,	,
e. 4.4×10^{-3}	[A 12]	- ((0.13) + +	T	227			_	
	[0.13]			70	1.76				

10. The half-life of a first-order reaction is 13 min. If the initial concentration of reactant is 0.085 M, it takes ____ ____ min for it

The reaction $A \rightarrow B$ is first order in [A]. Using the data below, 11. the rate constant for this reaction is $_______________$

time(s)	[A] (M)	2 ways: a + and find shope
0.0 5.0 10.0 15.0 20.0 a. 0.013 b. 0.030 c. 0.14 d. 3.0 e. 3.1 × 10	1.60 0.80 0.40 0.20 0.10	2) use two pts. with: In [A) o In [A) t = -kt + In [A) o

12. The rate constant of a first-order process that has a half-life of 225 s

$$\frac{\text{is}}{\text{a. }0.693} = \frac{\text{s}^{-1}}{\text{b. }3.08 \times 10^{-3}}$$

$$\frac{\text{b. }3.08 \times 10^{-3}}{\text{c. }1.25}$$

$$\frac{\text{d. }12.5}{\text{e. }4.44 \times 10^{-3}}$$

$$t_{1/2} = \frac{\text{ln }2}{\text{ln }2} = \frac{0.693}{\text{ln }2}$$

$$\frac{\text{ln }2}{\text{ln }2} = \frac{0.693}{\text{ln }2}$$

$$\frac{\text{ln }2}{\text{ln }2} = \frac{0.693}{\text{ln }2}$$

Page 4

Key

- 13. One difference between first and second-order reactions is that the half-life of a first-order reaction does not depend on [A]₀; the half-life of a second-order reaction does depend on [A]₀
 - b. the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
 - c. the rate of a first-order reaction depends on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
 - d. a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - e. the half-life of a first-order reaction depends on $[A]_0$; the half-life of a second-order reaction does not depend on $[A]_0$
- 14. As the temperature of a reaction is increased, the rate of the reaction increases because the ______.
 - a. reactant molecules collide less frequently
 - b reactant molecules collide with greater energy per collision c. activation energy is lowered
 - d. reactant molecules collide less frequently $\underline{\text{and}}$ with greater energy per collision
 - e. reactant molecules collide more frequently with less energy per collision
- 15. In the potential energy profile of a reaction, the species that exists at the maximum on the curve is called the ______.

 a. product
 - (b) activated complex
 - c. activation energy
 - d. enthalpy of reaction
 - e. atomic state
- 16. The activation energy of a first-order reaction that has a rate constant of $4.41 \times 10^{-3} \, \mathrm{s}^{-1}$ at 351K and rate constant of $9.79 \times 10^{-2} \, \mathrm{s}^{-1}$ 588K is

OI 4.41 X	10-3s-1 a	t 351K	and rate	constant	of 9.79	$\times 10^{-2} s^{-1}$	588K is
	kJ/mol.	44	1 1 10-3	ϵ_{\circ}			1
a. 2.67	0	~ 1, 1	1 × 7 0	= 50			
b. 2.90	·	9.76	9 V112-2	- 8.3	14 J	1588	351
چ. 0.0589		74 - 7	1 10	04 3	•1		
(d) 22.4		F	20	/: - -		22 / L	ii /
e. 0.450		1- a	ニニメノ	4450		72.4 M	1

- 17. The stoichiometric equations and rate laws for several reactions are given below. Of these, only could represent an elementary step.
 - a. $2A \rightarrow P$ rate = k[A]b) $A + B \rightarrow P$ rate = k[A][B]c. $A + 2B \rightarrow P$ rate = k[A][C]d. $A + B + C \rightarrow P$ rate = k[A][C]e. $A + 2B \rightarrow P$ rate = k[A][B]

Page 5

Key

18. The stoichiometric equation for a reaction is:

$$2A + 2B \rightarrow C$$

The mechanism for this reaction is:

- (1) $A + B \rightarrow D$ (slow)
- (2) $D + B \rightarrow E$ (fast)
- (3) $A + E \rightarrow C$ (fast)

Of the following rate laws, _____ is the correct rate law for this mechanism.

- (a) Rate = $k_1[A][B]$
- b. Rate = $k_3[A][E]$
- c. Rate = $k_1[A]^2[B]^2$
- d. Rate = $k_2[D][B]$
- e. Rate = $k_2k_3[A][B][D]$
- 19. Of the following, _____ will lower the activation energy for a reaction.
 - a. increasing the concentrations of reactants
 - h raising the temperature of the reaction
 - (c.)adding a suitable catalyst
 - d. all of the above
 - e. none of the above

- 20. Which one of the following graphs shows the correct relationship between concentration and time for a reaction that is second order in [A]?
 - a. graph a
 - b. graph b
 - c. graph c
 - d. graph d
 - e. graph e

21. The graph shown below depicts the relationship between concentration and time for the following chemical reaction.

The slope of this line is equal to

- a. k
- b. -1/k
- c. $ln[A]_0$
- d) -k e. 1/k

Page 7

- 22. Which energy difference in the reaction profile below corresponds to the activation energy for the forward reaction?
 - a. w b. x c. y d. z
 - e. w and z

Extent of Reaction

The following table of experimental data is necessary to answer the questions below.

For the reaction: $2 \text{ ClO}_2(aq) + 2 \text{ OH}^-(aq) \rightarrow \text{ClO}_3^-(aq) + \text{ClO}_2^-(aq) + \text{H}_2\text{O}(1)$

Experiment	[ClO ₂]	[OH-]	initial rate	
1 2	0.060 M 0.020	0.030 M	0.0248 M/s 0.00276 to - A	(CeO2) × [OH] >
3	0.020	0.090	0.00276 0.00828 rate = k	(L) (M)

23. What is the order of the reaction with respect to Clo_2 ?

24. What is the order of the reaction with respect to OH-?

$$\begin{array}{ccc}
\frac{a.0}{6.1} & 0.00828 & - & (0.090) & 7 \\
0.00276 & 0.00276 & 0.030 & 7 \\
e.4 & 3 & = (3) & 7 & - 1
\end{array}$$

25. What is the value of the rate constant for the reaction?

a.
$$1.15 \times 10^4$$
b. 4.6
c. 230
d. 115
e. 713

$$0.0248 = k [0.060]^2 [0.030]'$$

$$k = 229.6$$