1. What is the rate law that corresponds to the data shown for the reaction $2A + B \rightarrow C$?

Exp.	Initial [A]	Initial [B]	Initial rate
1	0.015	0.022	0.125
2	0.030	0.044	0.500
3	0.060	0.044	0.500
4	0.060	0.066	1.125

- 2. The rate constant for a certain first-order reaction is 0.40/min. What is the initial rate in mole/L·min, if the initial concentration of the compound involved is 0.50 mol/L?
- 3. Nitrogen pentoxide decomposes by a first-order process yielding N₂O₄ and oxygen. $2N_2O_5 \rightarrow 2N_2O_4 + O_2$ At a given temperature, the half-life of N₂O₅ is 0.90 hr. What is the first-order rate

At a given temperature, the half-life of N_2O_5 is 0.90 hr. What is the first-order rate constant for N_2O_5 decomposition?

- 4. The rate constant for the first-order decomposition of C₄H₈ at 500°C is 9.2×10^{-3} s⁻¹. How long will it take for 10.0% of a 0.100 M sample of C₄H₈ to decompose at 500°C?
- 5. The reaction $2A + B \rightarrow products$ is second order with respect to A and zero-order with respect to B. Starting with 0.135 M of A, what is the concentration of A after 35 min if the rate constant is 0.11 M⁻¹s⁻¹?
- 6. The reaction 2A → *products* is second order with respect to A. If the concentration of A drops from 1.05 M to 0.815 M in a time of 15.0 min, what is the rate constant for this reaction (the same time units may be used)?
- 7. It is possible for the following overall reaction to consist of a one step mechanism: $2A + B + C \rightarrow products$
 - A) True
 - B) False
- The rate law predicted by the following two-step mechanism is rate = k[A][B]. (true or false)

 $A \rightarrow C + B \qquad slow \\ A + B \rightarrow C + E \qquad fast$

- A) True
- B) False

9. The rate determining step in the following mechanism is bimolecular (true or false)

 $\begin{array}{ll} A \rightarrow C + B & slow \\ A + B \rightarrow C + E & fast \end{array}$

- A) True
- B) False

10. B is a catalyst in the following mechanism: (true or false)

 $\begin{array}{ll} A \rightarrow C + B & slow \\ A + B \rightarrow C + E & fast \end{array}$

- A) True
- B) False

Answer Key

Rate = k[B]²
0.20
0.77 hr⁻¹
11 s
4.2 x 10⁻³ M
1.83 x 10⁻² M⁻¹min⁻¹
B
B
B
B
B

Answer Key

Rate = k[B]²
0.20
0.77 hr⁻¹
11 s
4.2 x 10⁻³ M
1.83 x 10⁻² M⁻¹min⁻¹
B
B
B
B
B