CHM 152/54 Exam 1 Formulas

rate = k

rate = k[A] rate = $k[A]^2$ $[A]_t = -kt + [A]_0$

 $\ln[A]_t = -kt + \ln[A]_0$

 $1/[A]_t = kt + 1/[A]_0$ $t_{1/2} = [A]_0/2k$

 $t_{1/2} = 0.693/k$

 $t_{1/2} = 1/k[A]_0$

 $k = Ae^{-Ea/RT}$

PV = nRT

 $K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

CHM 152/54	Exam 1	100 Pts	Fall 2003	Name:
OILLIA IDEIO		1001		1 100223

1. For the overall chemical reaction shown below, which one of the following statements can you rightly assume?

$$2H_2S(g) + O_2(g) \rightarrow 2S(s) + 2H_2O(l)$$

- A. The reaction is second-order overall.
- B. The reaction is third-order overall.
- C. The rate law is, rate = $k[H_2S]^2[O_2]$.
- D. The rate law cannot be determined from the information given.
- E. The rate law is, rate = $k[H_2S][O_2]$.
- 2. The reaction $A + 2B \rightarrow$ products was found to follow the rate law: rate = k[A]²[B]. Predict by what factor the rate of reaction will increase when the concentration of A is doubled and the concentration of B is tripled, and the temperature remains constant.
 - A. 12
 - B. 18
 - C. 5
 - D. 6
 - E. None of the above.
- 3. The units for a first-order rate constant are
 - A. 1/M•s
 - B. 1/M²•s
 - C. 1/s
 - D. M/s
- 4. It takes 42 min for the concentration of a reactant in a first-order reaction to drop from 0.45M to 0.32M at 25°C. How long will it take for the reaction to be 90% complete?
 - A. 137 min
- B. 13 min
- C. 86 min
- D. 284 min
- E. 222 min

 Nitric oxide gas (NO) reacts with chlorine gas according to the equation NO + ½Cl₂ → NOCl.

The following initial rates of reaction have been measured for the given reagent concentrations.

Expt. #	Rate (M/hr)	<u>NO (M)</u>	<u>Cb(M)</u>
1	1.19	0.50	0.50
2	4.79	1.00	0.50
3	9.59	1.00	1.0

Which of the following is the rate law (rate equation) for this reaction?

- A. rate = $k[NO][Cl_2]$
- B. rate = k[NO]
- C. rate = $k[NO]^2[Cl_2]$
- D. rate = $k[NO][Cl_2]^{1/2}$
- E. rate = $k[NO]^2[Cl_2]^2$
- 6. At 25°C, the rate constant for the first-order decomposition of a pesticide solution is 6.40×10^{-3} min⁻¹. If the starting concentration of pesticide is 0.0314 M, what concentration will remain after 62.0 min at 25°C?
 - A. $2.11 \times 10^{-2} M$
 - B. -8.72.0M°
 - C. $2.68 \times 10^{-2} \,\mathrm{M}$
 - D. 47.4M
 - E. 1.14×10^{-1} M
- 7. A certain first-order reaction $A \rightarrow B$ is 25% complete in 42 min at 25°C. What is the half-life of the reaction?
 - A. 42 min
- B. 21 min
- C. 101 min
- D. 120 min
- E. 84 min

8. Nitric oxide reacts with chlorine to form nitrosyl chloride, NOCl. Use the following data to determine the rate equation for the reaction.

$$NO + 1/2Cl_2 \rightarrow NOCl$$

<u>Expt. #</u>	[NO]	$[Cl_2]$	Initial Rate
1	0.22	0.065	0.96 M/min
2	0.66	0.065	8.6 M/min
3	0.22	0.032	0.48 M/min

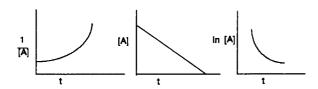
- A. rate = $k[NO]^2[Cl_2]$
- B. rate = $k[NO][Cl_2]^{1/2}$
- C. rate = $k[NO][Cl_2]$
- D. rate = $k[NO]^2[Cl_2]^2$
- E. rate = k[NO]
- 9. The isomerization of cyclopropane to form propene

is a first-order reaction. At 760 K, 15% of a sample of cyclopropane changes to propene in 6.8 min. What is the half-life of cyclopropane at 760 K?

- A. 2.5 min
- B. 29 min
- C. 3.4×10^{-2} min
- D. 230 min
- E. 23 min
- 10. The reaction $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ is suspected to be second order in NO_2 . Which of the following kinetic plots would be the most useful to prove whether or not the reaction is second order?
 - As. a plot of $[NO_2]^2$ vs. t
 - B. a plot of $[NO_2]^{-1}$ vs. t
 - C. a plot of $\ln [NO_2]^{-1}$ vs. t
 - D. a plot of $ln [NO_2]$ vs. t
 - E. a plot of [NO₂] vs. t

Use the following information to answer questions 11-12. The thermal decomposition of acetaldehyde is a second-order reaction.

$$CH_3CHO \rightarrow CH_4 + CO$$


The following data were obtained at 518°C. The initial pressure of CH₃CHO is 364 mmHg.

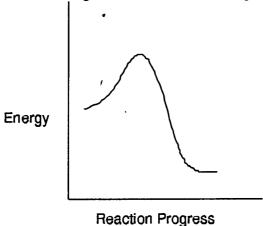
time, s	Pressure CH3CHO, mmHg
42	330
105	290
720	132

- 11. Calculate the rate constant for the decomposition of acetaldehyde from the above data.
 - A. 2.2×10^{-3} /s
 - B. 5.2×10^{-5} /mmHg s
 - C. 0.70 mmHg/s
 - D. 2.2×10^{-3} /mmHg s
 - E. 6.7×10^{-6} /mmHg s
- 12. Based on the data given, what is the half-life of acetaldehyde?

 - A. 305 s B. $1.5 \times 10^5 \text{ s}$ C. 410 s

- D. 520 s E. $5.4 \times 10^7 \text{ s}$
- 13. The graphs below all refer to the same reaction. What is the order of this reaction?

- A. second order
- B. zero order
- C. first order
- 14. Which one of the following changes would alter the rate constant (k) for the reaction $2A + B \rightarrow products?$
 - A. increasing the temperature
 - B. measuring k again after the reaction has run for a while E. the rate constant will not change
 - C. increasing the concentration of B
 - D. increasing the concentration of A


- 15. If E_a for a certain biological reaction is 50 kJ/mol, by what factor (how many times) will the rate of this reaction increase when body temperature increases from 37°C (normal) to 40°C (fever)?
 - A. 1.0002 times
 - B. 2.0×10^5 times
 - C. 1.20 times
 - D. 2.0 times
 - E. 1.15 times
- 16. The isomerization of methyl isocyanide (CH₃NC).

$$CH_3NC \rightarrow CH_3CN$$

follows first-order kinetics. The half-lives were found to be 161 min at 199°C, and 12.5 min at 230°C. Calculate the activation energy for this reaction.

- A. 124 kJ/mol
- B. 31.4 kJ/mol
- C. $6.17 \times 10^{-3} \text{ kJ/mol}$
- D. 163 kJ/mol
- E. 78.2 kJ/mol

Use the following information to answer questions 17-18.

- 17. For the chemical reaction system described by the diagram above, which statement is true?
 - A. At equilibrium, the activation energy for the forward reaction is equal to the activation energy for the reverse reaction.
 - B. The activation energy for the forward reaction is greater than the activation energy for the reverse reaction.
 - C. The reverse reaction is exothermic.
 - D. The activation energy for the reverse reaction is greater than the activation energy for the forward reaction.
 - E. The forward reaction is endothermic.
- 18. For the chemical reaction system described by the diagram above, which statement is true?

If the E_a for the forward reaction is 25 kJ/mol, and the enthalpy of reaction is -95 kJ/mol, what is E_a for the reverse reaction?

- A. -70 kJ/mol
- B. 95 kJ/mol
- C. 70 kJ/mol
- D. 120 kJ/mol
- E. 25 kJ/mol
- 19. An increase in the temperature of the reactants causes an increase in the rate of reaction. The best explanation is: As the temperature <u>increases</u>,
 - A. the activation energy decreases.
 - B. the collision frequency increases.
 - C. the fraction of collisions with total kinetic energy $> E_a$ increases.
 - D. the concentration of reactants increases.
 - E. the activation energy increases.

- 20. According to the collision theory, all collisions do not lead to reaction. Which choice gives <u>both</u> reasons why all collisions between reactant molecules do not lead to reaction?
 - 1. The total energy of two colliding molecules is less than some minimum amount of energy.
 - 2. Molecules cannot react with each other unless a catalyst is present.
 - 3. Molecules that are improperly oriented during collision will not react.
 - 4. Solids cannot react with gases.
 - A. 2 & 3
- B. 3 & 4
- C. 1 & 2
- D. 1&3
- E. 1&4

21. The rate law for the reaction

$$H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$$

is rate = $k[H_2O_2][I^-]$. The following mechanism has been suggested.

slow

$$H_2O_2 + I^- \rightarrow HOI + OH^-$$

$$OH^- + H^+ \rightarrow H_2O$$
 fast

$$HOI + H^+ + I^- \rightarrow I_2 + H_2O$$
 fast

Identify all intermediates included in this mechanism.

- A. H+ and I-
- B. HOI and OH-
- C. H₂O and OH-
- D. H+ and HOI
- E. H+ only
- 22. The rate law for the reaction $2NO_2 + O_3 \rightarrow N_2O_5 + O_2$ is rate = $k[NO_2][O_3]$. Which one of the following mechanisms is consistent with this rate law?

A.
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (slow)

$$NO_3 + NO_2 \rightarrow N_2O_5$$
 (fast)

B.
$$NO_2 + O_3 \rightarrow NO_5$$
 (fast)

$$NO_5 + NO_5 \rightarrow N_2O_5 + 5/2O_2$$
 (slow)

C.
$$NO_2 + NO_2 \rightarrow N_2O_4$$
 (fast)

$$N_2O_4 + O_3 \rightarrow N_2O_5 + O_2$$
 (slow)

D.
$$NO_2 + NO_2 \rightarrow N_2O_2 + O_2$$
 (slow)

$$N_2O_2 + O_3 \rightarrow N_2O_5$$
 (fast)

- 23. Complete this statement: A catalyst
 - A. alters the reaction mechanism.
 - B. increases the activation energy.
 - C. increases the collision frequency of reactant molecules.
 - D. increases the average kinetic energy of the reactants.
 - E. increases the concentration of reactants.
- 24. Dinitrogen monoxide (N2O) decomposes at 600°C according to the balanced equation

$$2N_2O(g) \to 2N_2(g) + O_2(g)$$

A reaction mechanism involving three steps is shown below. Identify all of the catalysts in the following mechanism.

$$Ch(g) \rightarrow 2Cl(g)$$

 $N_2O(g) + Cl(g) \rightarrow N_2(g) + ClO(g)$ (occurs twice)
 $ClO(g) + ClO(g) \rightarrow Ch(g) + O_2(g)$

- A. ClO
- B. N₂O
- C. Cl₂
- D. Cl
- E. ClO and Cl
- 25. For the reaction represented below, the experimental rate law is given as follows: Rate = k [(CH₃)₃CCl].

$$(CH_3)_3CCI(aq) + OH^- \rightarrow (CH_3)_3COH(aq) + CH^-$$

If some solid sodium hydroxide is added to a solution in which $[(CH_3)_3CCI] = 0.01M$ and [NaOH] = 0.10 M, which of the following would be true? (Assume the temperature and volume remain constant.)

- A. The reaction rate would increase but k would remain the same.
- B. Both the reaction rate and k would decrease.
- C. The reaction rate would decrease but k would remain the same.
- D. Both the reaction rate and k would increase.
- E. Both the reaction rate and k would remain the same.