1. A 2.21 L vessel was found to contain 4.18 x 10^{-2} mol of CO_2 , 2.81 x 10^{-2} mol of CO, and 8.89 x 10^{-3} mol of O_2 . Is the system at equilibrium for the following reaction? If not, which direction must the reaction proceed to achieve equilibrium?

$$2CO_2 = 2CO + O_2$$
 $K_C = 1.2 \times 10^{-13}$

- a) ves
- b) no, to the right
- c) no, to the left
- 2. Consider the following reaction at equilibrium.

$$2NH_3(g) \Rightarrow N_2(g) + 3H_2(g)$$

$$\Delta H^{\circ} = +92.4 \text{ kJ}$$

This reaction can be driven further to completion by using conditions of

- a) high temperature and high pressure
- b) high temperature and low pressure
- c) low temperature and low pressure
- d) low temperature and high pressure
- 3. Consider the following reaction at equilibrium.

$$2NH_3(g) = N_2(g) + 3H_2(g)$$

$$\Delta H^{\circ} = +92.4 \text{ kJ}$$

Adding $N_2(g)$ to this reaction will

- a) decrease the concentration of NH3 (g) at equilibrium
- b) decrease the concentration of $H_2(g)$ at equilibrium
- c) increase the value of the equilibrium constant
- d) cause the reaction to shift to the right
- 4. The hydronium-ion concentration of a 0.010-molar hypochlorous acid solution, HOCl, is $5.48~\mathrm{x}$ 10^{-6} M. What is the pH of the solution?
- 5. A solution has a pH value of 5.48. The [OH-] concentration for this solution is
- 6. The hydronium-ion concentration of a 0.050 M lactic acid solution is 2.62×10^{-3} . The acid dissociation constant is 1.37×10^{-4} . The pH of this lactic acid solution is _
- 7. A solution which is formed by combining 200. mL of 0.15 M HCl with 300. mL of 0.090 M NaOH has a [OH-] concentration of
- 8. Which of the following acids has the strongest conjugate base?
- b. $HClO_3$ c. $HClO_2$
- e. HCl

9. Which of the following is true with regard to a $0.030 \text{ M} \text{ H}_2\text{CO}_3$ solution?

- a. $[H^{+}] > [H_{2}CO_{3}] b$. $[H_{2}CO_{3}] > [H^{+}]$ c. $[HCO_{3}^{-}] > [H_{2}CO_{3}]$

- d. $[CO_3^2] > [H_2CO_3]$
- e. $[CO_3^2] > [HCO_3]$
- 10. Which of the following pairs of solutions could be mixed to produce a buffer?
- a. NaOH and HCl only b. HF and NaF only c. NH $_3$ and NH $_4$ Cl only
- d. both a and b
- e. both b and c
- 11. Which of the following salts when added to pure water will not change the pH of the solution? d. Li₂SO₄ e. Na₂Oa. KI b. NaCH₃COO c. BaS
- 12. In a sample of pure water, only one of the following statements is always true at all conditions of temperature and pressure. Which one is always true?
 - a) $[H_3O^*] = 1.9 \times 10^{-7} M$
- b) $[OH^+] = 1.0 \times 10^{-7} M$

c) pH = 7.0

- d) pOH = 7.0 e) $[H_3O^+] = [OH^-]$
- 13. Calculate the concentrations of ${\rm H_3O^+}$ and ${\rm OH^-}$ ions in a 0.050 M Ba(OH) 2 solution.

14. Dichloroacetic acid is a weak monoprotic acid. A 0.100 M solution of this acid has [H₃O⁺] = 0.0070 M. What is the value of K_a for Cl₂HCCOOH? The reaction is

 $Cl_2HCCOOH + H_2O = H_3O^+ + Cl_2HCCOO^-$

- 15. The ionization constant for the hypothetical weak acid, HA, is 1.0 x 10^{-5} . What is the equilibrium concentration of [H_3O^*] in 0.20 M HA solution?
- 16. Calculate the pH of a solution that is 0.20 M in NaCH3COO and 0.10 M in CH3COOH.
 - a) 4.63
- b) 4.74
- c) 4.95
- d) 5.05
- e) 5.22
- 17. If 0.090 mole of solid NaOH is added to 1.0 liter of 0.180 M CH₃COOH, what will the pH of the resulting solution be? Assume no volume change due to addition of NaOH. K_a (HOAc) = 1.8 x 10⁻⁵)
 - a) 4.51
- b) 4.74
- c) 5.08
- d) 5.70
- e) 5.94
- 19. The volume for BaCO3 is 9.0 x 10-5 M at 25°C. What is the solubility product constant for BaCO3?
- 19. One liter of saturated zine hydroxide solution contains 0.000222 g of dissolved ${\rm Zn}\,({\rm OH})_2$. Calculate ${\rm N}_{\rm Sp}$ for ${\rm Zn}\,({\rm OH})_2$.
- 20. Magnesium hydroxide is a slightly soluble substance. If the pH of a saturated solution of Mg(OH)₂ is 10.49 at 25°C, calculate $K_{\rm SD}$ for Mg(OH)₂.
- 21. The value of $K_{\rm SD}$ for SrSO4 is 2.8 x 10⁻⁷. What is the molar solubility of SrSO4?
- 22. The $K_{\rm p}$ for magnesium arsenate is 2.1 x 10⁻²⁰ at 25°C. What is the molar solubility of Mg₃ (AsO₄)₂ at 25°C?
- 23. Calculate the concentration of F⁻ ions in saturated CaF₂ solution at 25°C. $K_{\rm Sp}$ = 3.9 x 10-11.
- The $K_{\rm sp}$ for Fe(IO₃)₃ is 10⁻¹⁴. We mix two solutions, one containing Fe³⁺ and one containing 10_3^- ions at 25°C. At the instant of mixing, [Fe³⁺] = 10^{-4} M and [IO₃⁻] = 10^{-5} M. Which one of the following statements is true?
 -) A precipitate forms, because $Q_{sp} > K_{sp}$.
 - b) A precipitate forms, because $Q_{sp} < K_{sp}$.
 - c) No precipitate forms, because $Q_{SD} > K_{SD}$.
 - d) No precipitate forms, because $Q_{SD} < K_{SD}$.
 - e) None of the preceding statements is true.
- 25. Calculate the [Ca²⁺] required to start the precipitation of calcium fluoride, CaF₂, from a solution containing 0.0025 M F⁻ at 25°C. $K_{\rm SD}$ for CaF₂ = 3.9 x 10⁻¹¹
- 26. Solit Na_2SO_4 is added to a solution that is 0.30 M in both Sr^{2^+} and Pb^{2^+} . Assuming no volume change, what will be the $[Pb^{2^+}]$ at the point at which $SrSO_4$ just begins to precipitate at 25°C? $K_{\rm Sp}$ for $SrSO_4 = 2.8 \times 10^{-7}$ and for $PbSO_4 = 1.8 \times 10^{-8}$.

ANSWERS:

1C, 2B, 3B, 4 (5.26), 5(3.0 x 10^{-9}), 6(2.58), 7(1.67 x 10^{-12}), 8D, 9B, 10E, 11A, 12E, 13 [H₃O⁺] = 1.0 x 10^{-13} M, [OH⁻] = 0.10 M, 14 b) 5.3 x 10^{-4} , 15 c) 1.4 x 10^{-3} M, 16D, 17B, 18 b) 8.1 x 10^{-9} , 19 c) 4.5 x 10^{-17} , 20 e) 1.5 x 10^{-11} , 21 c) 5.3 x 10^{-4} M, 22 c) 4.5 x 10^{-5} M, 23 b) 4.3 x 10^{-4} M, 24D, 25 d) 6.2 x 10^{-6} M, 26 d) 0.019 M