

- 1. What is the equilibrium expression, K_c , for the following reaction? $Ca_3 (PO_4)_2 (\underline{s}) \iff 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$
 - a) $K_{C} = [Ca_{3}(PO_{4})_{2}] / [Ca^{2+}][PO_{4}^{3-}]^{2}$ b) $K_{C} = [Ca^{2+}][PO_{4}^{3-}] / [Ca_{3}(PO_{4})_{2}]$ c) $K_{C} = [Ca^{2+}]_{3}[PO_{4}^{3-}]^{2} / [Ca_{3}(PO_{4})_{2}]$ e) $K_{C} = [Ca^{2+}]_{3}[PO_{4}^{3-}]^{2} / [Ca_{3}(PO_{4})_{2}]$

$$K_{sp} = \left[Ca^{2+} \right]^{3} \left[Po_{y} \right]^{2}$$

2. A 1.00 liter flask contained 0.24 mol NO_2 at 700 K. which decomposed according to the following equation. When equilibrium was achieved, 0.14 mol NO was present. Calculate $K_{\rm C}$.

 $\frac{2NO(g) + o_2(g)}{K_c - [NO)^2(0)} = 2NO_3 = 2NO_4 + O_3 = (0.14)^2[0.0]$ $\frac{1}{100} = \frac{1}{100} =$ ax 0.098 (b))0.14 c) 1.1×10^{-2} d) 5.7×10^3 e) 9.6×10^{-3} 2x = 0.14 X= 0.01

3. A mixture of 0.40 moles of H_2 and 0.40 moles of I_2 is placed in a 1.00 liter container at 650°C and allowed to reach equilibrium according to the following equation. The equilibrium

[765 I 0.40 0.40 a) $[H_2] = 0.13$ $[I_2] = 0.13$ [HI] = 0.53b) $[H_2] = 0.040$ $[I_2] = 0.040$ [HI] = 0.32E = 0.40 - x = 0.40 - x $64 = \frac{(2x)^2}{(0.40 - x)^2}$ Per -er square! $(I_2] = 0.080 [I_2] = 0.080 [HI] = 0.64$ d) $[H_2] = 0.32$ $[I_2] = 0.32$ [HI] = 0.24e) $[H_2] = 0.015$ $[I_2] = 0.015$ [HI] = 0.12e) $[H_2] = 0.015$ $[I_2] = 0.015$ [HI] = 0.12 $S = \frac{2 \times}{0.4 v - x} \xrightarrow{3.2} \frac{3.2}{0.4 v - x}$ 4. Consider the reaction 2A(g) = B(g) where $K_C = 0.5$ at the temperature of the reaction. If

- 2.0 moles of A and 2.0 moles of B are introduced into a 1.00 liter flask, what change in concentrations (if any) would occur in time?
 - a) [A] increases and [B] increases b) [A] increases and [B] decreases c) [A] decreases and [B] increases d) [A] decreases and [B] decreases [A] and [B] remain the same

$$2A(9) \ge 89) \quad K_{c} = 0.5$$

$$2 \quad k_{c} = \frac{187}{12}$$

$$Q = \frac{1}{12}$$

$$Q = \frac{1}{12}$$

$$Q = \frac{1}{12}$$

5.	Exactly 0.50 mole of sulfur trioxide, 0.10 mole of sulfur dioxide, 0.20 monoxide and 0.30 mole nitrogen dioxide are sealed in a 1.0-L flask at equilibrium constant K_C is 0.24 for the following reaction.	mole of 1500°C.	nitrogen The
	SOc (g) - No () C 15 0.24 for the following reaction.	•	

$$SO_3(g) + NO(g) = SO_2(g) + NO(g)$$
 $K_c = 0.24$

When equilibrium is achieved, what changes in concentrations of SO3 and NO will be observed?

$$Q > Q = 0.3$$

$$Q > K_C = 0.3$$

$$ShiCl$$

6. In which of the following reactions does a decrease in the volume of the container increase the concentration of the products? Assume constant temperature.

a)
$$SO_2Cl_2(g) = SO_2(g) + Cl_2(g)$$

b) $C(s) + H_2O(g) = CO(g) + H_2(g)$
c) $2SO_3(g) = 2SO_2(g) + O_2(g)$
d) $I_2(g) + Cl_2(g) = 2ICl(g)$
e) $2NO + Br_2(g) = 2NOBr(g)$ 3 mol(g) $\Rightarrow 2 mol(g)$

7. A flask contains the following system at equilibrium: $PbCl_2(s) \Leftarrow Pb^{2+}(aq) + 2Cl-(aq)$

If solid NaCl is added to the system, what change (if any) will be observed?

- a) more PbCl₂ will dissolve b) more PbCl₂ will precipitate
 - c) more Pb^{2+} will be in solution
 - d) fewer Cl- will be in solution
 - e) no change will be observed

8. A flask contains the following system at equilibrium: $Mg(OH)_2(s) \iff Mg^{2+}(aq) + 2OH- (aq)$

Which of the following reagents could be added to increase the solubility of Mg(OH) $_2$?

- a) NaCl <u>b)</u> NaOH c)) HCl
- OHT + HT >> H20

a) H₂0

- 9. Which of the following statements concerning equilibrium is true?
 - a) Catalysts are an effective means of changing the position of an equilibrium.
 - b) The concentration of the products equals the concentration of reactions for a reaction at
 - c) The equilibrium constant may be expressed in pressure terms or concentration terms for
 - d))When two opposing processes are proceeding at the same rate, the system is at
 - e) A system at equilibrium cannot be disturbed.

VERSION 1 10. In the equation, $NH_4^+(aq)$ + $H_2O(1)$ $\stackrel{\leftarrow}{=}$ $NH_3(aq)$ + $H_3O^+(aq)$ a) NERROR: undefined by the conjugate base. b) H_2^{OF} is an acid and H_3O^+ is its conjugate base. c) NHartacks: an acid and ${\rm H_3O^+}$ is its conjugate base. d) ${\rm H_2O}$ is an acid and ${\rm NH_4}^+$ is its conjugate base. e) $\mathrm{NH_3}$ is an acid and $\mathrm{NH_4}^+$ is its conjugate base. 11. The conjugate base of \mbox{HCO}_3^- is Aud - Ht = C.B. (a)) CO32b) H₂CO₃ c) H₃O⁺ d) OHe) H₂O 12. At 50°C the water ionization constant, K_W , is 5.48 x 10⁻¹⁴. What is the [H₃O⁺] in neutral CHOJEOH) = KW ON (HT) = (CHO) a) 5.48×10^{-7} (b) 2.34×10^{-7} (HT)=[OH] = NKW = 1/5.48 X1014 c) 1.00×10^{-7} d) 5.48×10^{-14} e) 4.27×10^{-13} 13. What is the pH of a 0.0813 M \underline{HNO}_3 solution at 25°C? a) 0.813 Strong Acid (HT) = Come of acid b) 0.910 1.090 ph = - Log (0.0813) = e) 1.870 14. What is the pH of a 1.86 M $CH_3CH_2CO_2H$ solution at 25°C? $K_a = 1.3 \times 10^{-5}$ $CH_{2}CO_{2}H \ge H^{+} + CH_{3}CH_{2}CO_{2}^{-}$ $K_{a} = \frac{CH_{2}CH_{3}CH_{3}CH_{3}CO_{2}^{-}}{CCH_{3}CH_{3}CO_{3}H_{3}}$ $K_{a} = \frac{CH_{2}CH_{3}CH_{3}CO_{3}H_{3}CH_{3}CO_{3}H_{3}}{CCH_{3}CH_{3}CO_{3}H_{3}}$ $K_{a} = \frac{CH_{2}CH_{3}CH_{3}CO_{3}H_{3}CH_{3}CO_{3}H_{3}}{CCH_{3}CH_{3}CO_{3}H_{3}}$ $K_{a} = \frac{CH_{2}CH_{3}CH_{3}CO_{3}H_{3}CH_{3}CO_{3}H_{3}}{CCH_{3}CH_{3}CO_{3}H_{3}}$ $K_{a} = \frac{CH_{2}CH_{3}CH_{3}CH_{3}CO_{3}H_{3}CH_{3}CO_{3}H_{3}}{CCH_{3}CH_{3}CO_{3}H_{3}}$ a) 4.92 b) 4.88 5. What is the pH of a 0.0144 M Ca(OH)₂ solution at 25°C? $X = 0.004917 = ZH^{+}$ Ca(01+)2 (2) > Ca2+ 20+ PH =- Lug CHD a) 1.54 b) 1.84 c) 10.84 d) 12.16 [BH-] = 2 (0.5144) = 0.0288 pult = 1.54

PH= 12.45

WK. bAse

16. What is the pH of a 0.0443 M ammonia (NH₃) solution at 25°C?
$$K_b = 1.8 \times 10^{-5}$$

a) 3.05

b) 6.10

c) 9.25

c) 9.25

e) 12.64

E 0.0443-X

The pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of a wark while a constant of the pH of a 2.28 M solution of the pH of a

17. The pH of a 2.28 M solution of a weak acid is 5.21 at 25° C. What is K_a for the weak acid?

a) 2.1×10^{-5}

b) 6.2×10^{-6}

c) 8.8×10^{-9}

d) 4.8×10^{-10} (e)) 1.7 x 10^{-11}

 $HA_{ey} = H^{+} + A^{-} \qquad K_{a} = \frac{(H^{+})(A^{-})}{(HA)^{-}}$ $[H^{+}] = 10^{-5.21} = 6.16 \times 10^{-6}$ $K_{a} = \frac{(6.16 \times 10^{-6})^{2}}{(2.28 - 6.16 \times 10^{-6})}$

18. Three weak acids have the formulas and K_a values listed, Formic acid

CHO2H

 1.8×10^{-4}

weakest Aud

Cyanic Acid

HOCN 3.5 x 10⁻⁴

Chloroacetic Acid $C_2H_2Clo_2H$ 1.4 x 10^{-3} Which of the following is the strongest base?

a) C2H₂ClO₂-

weakest acid gives strongest conj Base.

b) ocn-

(c)) HCO2⁻

d) H₂O

e) H₃O⁺

19. Of the salts, KCH_3CO_2 , NH_4Cl , KBr, and NH_4NO_3 , how many would form an acidic aqueous

a) four

NHy + H20 = NHy OH + H+

b) three

NHy+ + 1ho = NH3 + Hao+

e) zero (none form basic solutions)

20. If you mix equal molar quantities of KOH and HNO3, the resulting solution will be

- a) acidic because a small amount of \mbox{KNO}_3 is present.
- b) acidic because a small amount of ${\rm H_3O}^{\frac{1}{2}}$ is present.
- c) basic because a small amount of OH is present.
- d) basic because a small amount of KNO3 is present. neutral.