1. For the reaction between nitrogen(II) oxide and chlorine to produce nitrosyl chloride, $2NO + Cl_2 \longrightarrow 2NOCl$, it is found that tripling the concentration of both reactants increases the rate by a factor of 27. If only the concentration of chlorine is tripled, the rate increases by a factor of 3. The order of this reaction with respect to NO is

.pled, the rate increases V_{1} ...

NO is V_{1} ate = V_{2} [NO) V_{2} [Ce] V_{3} ...

When tripled (Both) [3] V_{2} [3) V_{3} = 27

1...

1...

[1] V_{2} [3] V_{3} = 3 V_{3} = 2 1/2. b.

2. The rate constants for the decomposition of a compound are $6.2 \times 10^{-4} \text{ s}^{-1}$ at 45°C and $2.1 \times 10^{-3} \text{ s}^{-1}$ at 55°C . What is the value of the activation energy for this reaction in kJ/mol?

 $\ln\left(\frac{6.2 \times 10^{-4}}{2.1 \times 10^{-3}}\right) = \frac{Ea}{8.3147} \left(\frac{1}{55+273} - \frac{1}{45+273}\right)$ b. 1.1 x 10² c. 2.5 x 10³ d. 2.5 x 10⁴ Ea=105 794 J/mo! = 1.1 & J/mo!

The reaction $CHCl_3(g) + Cl_2(g) \longrightarrow CCl_4(g) + HCl(g)$ has been proposed to occur by the mechanism

fast equilibrium $CHCl_3 + Cl^{\ddagger} \xrightarrow{k_2} HCl + CCl_3$ slow step ccl3 + cl + k3 ccl4 very fast equilibrium rate = R2 [CHCl2] VR. ICL2)

The overall experimental rate law which is consistent with this mechanism is

a. rate = $k_1[Cl_2]$. b. rate = $k_2[CHCl_3][Cl]$. c. rate = $k_3[CCl_3][Cl]$. d. rate = $k_{exp}[CHCl_3][Cl_2]$. e. rate = $k_2k_{eq}[CHCl_3][Cl_2]^{1/2}$.

rate = R [CHCl] [Ce] 3

- 4. Most reactions are more rapid at high temperatures than at low temperatures. This is consistent with which of the following?
 - 1: an increase in the rate constant with increasing temperature
 - 2. an increase in the activation energy with increasing temperature
 - an increase in the percentage of "high-energy" collisions with increasing temperature
 - a. 1 only
 - b. 2 only c. 3 only
 - (a) 1 and 3
 - e. 1, 2, and 3
- 5. A reaction which is/second order) in one reactant has a rate constant of 1.0 x 10^{-1} L mol^{-1} s⁻¹. If the initial concentration of the reactant is 0.100 M, how long will it take for the concentration to become 0.0500 M?
 - (a) 100 s LAT = At + LAT. b. 500 s c. 1000 s TO 25007 = (1.0 × 10-1) + + 0.100)

6. The rate law for the oxidation of the iodide ion by the chlorate ion in aqueous acidic solution,

$$ClO_3^- + 9I^- + 6H^+ \longrightarrow 3I_3^- + Cl^- + 3H_2O$$

has been found to be

Rate =
$$k[ClO_3^-][I^-][H^+]^2$$

The overall order for the reaction is

- b. 2.
- © 4: 9:
- 16.

7. 64Co decays by a first-order process via the emission of a beta particle. The 64Co isotope has a half-life of 7.8 min. How long will it take for 15/16 of the cobalt to In [A] = - & + In [A]. undergo decay?

- a. 7.8 min
- b. 15.6 min
- 23.4 min
- d. 31.2 min
- 39.0 min

4) to Left

 $ln\left(\frac{1}{16}\right) = \left(-8.88 \times 10^{2} \text{ min}^{-1}\right) t$ $k = \frac{0.693}{7.8} = \frac{0.693}{7.8} = 8.88 \times 10^{-2}$ Mujor

- 8. The rate of reaction is usually expressed as the change in
 - a. the activation energy upon the addition of a catalyst.
 - b. the equilibrium expression upon the addition of a catalyst.
 - c. the pH at the equivalence point.
 - (d.) concentration per unit time.
 - concentration of the reactants versus that of the products.

9. A catalyst speeds up a chemical reaction by

- a. changing the stoichiometry.
- b. increasing the activation energy.
- providing an alternate reaction mechanism.
- d. shifting the equilibrium.
- e. increasing the reaction enthalpy.

10. All of the following would be expected to affect the rate of a chemical reaction except

- a. adding more reactants.
- removing some products.
 c. increasing the temperature.
 d. decreasing the temperature.

- e. adding a catalyst.

11., The following mechanism has been suggested for the reaction between nitrogen (d oxide and oxygen:

$$NO(g) + NO(g)$$
 $N_2O_2(g)$ $N_2O_2(g) + O_2(g)$ $N_2O_2(g)$

$$N_2O2(\frac{1}{9}) + O_2(g)$$
 $+ O_2(g)$ $+ O_2(g)$

slow

According to this mechanism the experimental rate law is

- a. second order in NO and zero order in O_2 .
- b second order in NO and first order in O_2 .
 - c. first order in NO and first order in O_2 .
 - d. first order in NO and second order in O2.
 - e. first order in NO and zero order in O2.

12. For the reaction

$$6CH_2O + 4NH_3 \longrightarrow (CH_2)_6N_4 + 6H_2O$$

the rate is expressed as $\frac{1}{6} \frac{\Delta (\text{H}_2 \text{O})}{\Delta \xi}$. An equivalent expression is

a.
$$\frac{1\Delta I (CH_2) \cdot 6N_4}{2} \cdot \sqrt{\frac{1}{2}}$$

b.
$$6\frac{\Delta \text{I CH}_2\text{Ol}}{\Delta \text{t}}$$
.

c.
$$-6\frac{\Delta (CH_2O)}{\Delta t}$$
.

$$\begin{array}{c} \text{d.} & -\frac{1\Delta \text{I NH}_3}{4\Delta \text{t}}. \end{array}$$

Nitric oxide reacts with hydrogen at a measurable rate at 1000 K according to the equation

$$2NO + 2H_2 \longrightarrow N^2 + 2H_2O$$

The experimental rate law is

Rate =
$$k [NO]^2 [H_2]$$

When time is in minutes and the concentration is in moles per liter, the units for k are

$$\begin{array}{c} \hline \text{C.} & \frac{L^2}{\text{moles}^2 \cdot \text{min}}. \\ \text{d.} & \frac{\text{moles}^2}{L^2 \cdot \text{min}}. \end{array}$$

d.
$$\frac{\text{moles}^2}{12 \cdot \text{min}}$$

e.
$$\frac{\text{moles}^3}{\text{L}^3 \cdot \text{min}}$$
.

- 14. Which of the following statements is always true?
 - a. Exothermic reactions have lower activation energies than endothermic reactions.
 - b. The rate for a reaction depends on the concentrations of all the reactants. The rate of a catalyzed reaction is dependent on the concentration of the catalyst.
 - d. The specific rate constant is dependent on the concentrations of the reacting species.
 - e. The rate law can be determined from the stoichiometric equation.

15. Nitrosyl chloride is produced from the reaction of nitrogen(II) oxide and chlorine.

$$2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$$

The following initial rates at a given temperature were obtained for the concentrations listed below:

Experiment	Rate $\frac{\text{mol}}{\text{L} \cdot \text{hr}}$	NO MOL	$\frac{\text{Cl}_2\left[\frac{\text{mol}}{L}\right]}{L}$	For NO:	$\frac{8.83}{2,21} = \left(\frac{0.50}{0.25}\right)^{\times}$
1 2 3	2.21 8.83 17.5	0.25 0.50 0.50	0.25 0.25 0.50		$4 = 2^{x}$ x = 2
 a. rate = k[b. rate = k[NO] 1/2[Cl ₂] NO] [Cl ₂] 1/2 NO] 2[Cl ₂]			for Un:	$\frac{17.5}{8.83} = \frac{(0.58)}{(0.25)}$ $2 = 2$

16. In a first-order reaction the half-life is 20. minutes. The rate constant, k, in

min a.	1 is 0.035. 0.35.	ty =	D. 613			
c.		Û	0.693	mis	-	0.0347 min
d.	13.9.	RE		, , , , ,	-	-
e.	35.	- , \	20.			

17. For a certain <u>second-order</u> decomposition reaction, the rate is 0.30 mol/(L · s) when the concentration of the reactant is 0.20 M. What is the rate

con	stant	(in units L/(mol • s)) for this reaction?
a.	0.67	rate = $k [A]^2$
b.	1.5	Tare = 1 (17)
c.	2.2	M 2 M M A TO 2 2 2
d.	3.0	$0.30 M = k [0.20]^2$
d. e.	7.5	s &=7.5 M-1s-1
		R=7,5 / S

18. The main reason for the increase in reaction rate with temperature is that

a. heat acts as a catalyst.

b. the activation energy increases rapidly with temperature.

c. a 10° temperature rise results in the rate doubling.

there is a dramatic increase in the number of collisions.

(e) the fraction of high-energy molecules increases exponentially with temperature.

19. Consider the reaction

$$aA + bB \xrightarrow{C} dD + eE C = catalyst$$

The rate law is

Rate =
$$k[A]^{q}[B]^{r}[C]^{s}$$

Which of the following statements is false?

The exponents q, r, and s are often integers.

(b) The exponents q and r are always equal to the coefficients a and b, respectively.

c. The exponent s must be determined experimentally.
d. The symbol k represents the rate constant.
e. The overall reaction order is q + r + s.

The times listed in the following table are those required for the concentration of $\rm S_2O_8^{2-}$ to decrease by 0.00050 M as measured in an "iodine clock" reaction at $23^{\circ}\rm C$. The net reaction is

s ₂ 0 ₈ 2- + 21-	→ I ₂ + 2	SO4 ²	Convert	Relative (A	(MY)	0.00050 M
Experiment	[S ₂ O ₈ ² -] ₀	[I]o	Time (sec)	RATE A	t / from	39 Sec
I	0.0400	0.08007	39	1,28 x10-		The same of the sa
II	0.0400	0.0400	78	6.41 X10-6	S '	
III	0.0100	0.0800	156	3.21 010 -6	_	
IV	0.0200	0.0200	?	3.2 × 10		~

Cal	culate	the expected time in	seconds for	experiment_IV.	(2000 X	
<u>a</u> .	634	for order wat.	S, Oc?);	1,28x10-5-	(0,0,0	$\times = 1$
(b)	312	70,0	~ 0 ~	3.21 X10-6	10.01001	
c.	234	0 10 1 4 1			10.0800	6-1
d.	156	for order wet. (1.28×10-5 -		7
e.	78		` A	6.41X10-6	(0.0400)	1 1 1 m
		rate = h (soi) (エ)ラゆこり	1-2 1-M OYOO.	and see	belows:

21. The oxidation of ammonia produces nitrogen and water via the reaction

 $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$. If the rate of formation of N_2 is 2.0 mol/(L · s), then the rate at which a. H_2O is being formed is 2.0 mol/(L · s). a. H₂O is being formed is 2.0 mol/(L • s).

- b) NH₃ reacts is 4.0 mol/(L · s). c. O_2 reacts is 1.5 mol/(L \cdot s).
- d. NH_3 reacts is 0.50 mol/(L s).
- e. H_2O is being formed is 0.67 mol/(L s).
- 22. A chemical reaction that is first order in x is observed to have a rate constant of 1.2×10^{-2} /s. If the initial concentration of x is 2.0 M, what is the concentration ln[x] + = -k+ + ln[x]o of x after 200 s?

(a.) 0.18 M b. 0.55 M

ln[X] + (-1.2 ×10-2) (200) + ln[2.0]

d. $6.0 \times 10^{-3} M$ e. 1.7 M

lu (X) = -1.707 50 e-1.707 = 0.181 M

23. The gas-phase decomposition of N_2O_5 is a first-order process with a rate constant of 1.50×10^{-3} /s at 55° C. The decomposition reaction is

$$N_2O_5(g) \longrightarrow 2NO_2(g) + 1/2O_2(g)$$

Ten (10.0) g of N_2O_5 are placed in vessel 1 and 5.0 g of N_2O_5 in vessel 2. The vessels are at the same temperature and pressure. How much time is required for half of the N2O₅ to decompose in each vessel?

- a. Vessel 1 requires twice as much time as vessel 2.
 b. Vessel 2 requires twice as much time as vessel 1.
 c. Vessel 1 requires three times as much time as vessel 2.
 d. Vessel 1 requires four times as much time as vessel 2.
- (e) Vessel 1 requires the same amount of time as vessel 2.

1st order half life is independent of conc. * 20. rate = 0.0040 [0.0200) [0.0200] = 1.6 X10-6 M

so for time rule =
$$\frac{\Delta E J}{\Delta t}$$

$$\Delta t = \frac{0.00050}{1.6 \times 10^{-6}} = 312.5 Seconds$$

- 1	/	
	K (24
/		7
		-

24. For the reaction I + I \longrightarrow I₂ at 25°C in CCl₄,

 $k = 8.2 \times 10^9 \text{ L/(mol } \cdot \text{ s)}$. From a consideration of the rate constant, we know that the reaction is

- since kunit = Mis-1 a. first order.
- c. endothermic. 5. rate eg. Mu.t se Into R [M]

 d. One can't tell without knowing the activation energy.

 e. One can't tell without an amount of the control b) second order.
- e. One can't tell without an experiment showing the concentration dependence of the iodine atom.
- 25. For the reaction

$$(CH_3)_3CC1 + OH^- \longrightarrow (CH_3)_3COH + C1^-$$

it is experimentally found that doubling the concentration of (CH₃)₃CCl causes the reaction rate to be increased twofold, but doubling the concentration of OH- has no effect on the rate. The rate equation is

- a. $R = k[(CH_3)_3CC1][OH^-]$. b. $R = k[(CH_3)_3CC1]^2[OH^-]$.
- c. $R = k[(CH_3)_3CC1] .$ d. $R = k[(CH_3)_3COH] [C1] .$ e. $R = k[(CH_3)_3COH] [C1] .$
- for [(cH2)3cce]: [2) = 2 for (OU): [2] = 1

26. Consider these data in order to answer the question that follows.

		- 15	61X	×
[A] [B] [C]	Initial Rate	for (A): 12=	3	= 3, X=
0.4 0.4 0.2	160	5	(3,7)	,
0.2 0.4 0.4	80)	1/0	CAUNT CAU	9
T 0.6 \ 0.1 \ 0.2	15	for R 1 160	(0,7)) *
$0.2 \setminus 0.1 - 0.2$	5	. 10. 21	10.21 0.1	
-0.2 0.2 0.4	20	3	14/4	(4 = 2
			16 = (7)	2 - 2
What is the order of t	he reaction with	respect to B?		•

- a. zero order
- b. first order
- © second order
- d. minus one
- e. impossible to tell from the data given
- 27. Two reactants, A and B, are mixed, and the reaction is timed until a color change occurs. The data are as follows:

900	[A] 0.100 0.050 0.100	[B] 0.140 0.140 0.070	Time (sec) 25 50 100	* No. So	te: Longer RXN 1 in RXN 3	4 times Faster than
The	order of the	reaction in	terms of [B] is	50: 4	= (0.140 X

- 1/2. 1.
- 2.
- 3.

- $\chi = 2$
- 28. A first-order chemical reaction is observed to have a rate constant of 25/min. What is the corresponding half-life for the reaction?
 - a. 12.5 min
 - b. 17.3 min
 - c. 0.29 s
 - 1.66 s 0.0277 s

 $t_y = \frac{\ln 2}{25}$, min = 0.0277 min

52 × 60580 => 1.66 5

29. From a consideration of the following reaction system

$$2H_2S(g) + O_2(g) \longrightarrow 2S(s) + 2H_2O(g)$$

we can conclude

- a. the reaction is second order in H2S and first order in O2.
- b. the reaction is first order in H2S and second order in O_2 .
- c. rate = $k[H_2S]^2[O_2]$.
- d. rate = $k[H_2S][O_2]$.
- e.) none of these conclusions are justified.

Experiment only

30. The reaction mechanism for the decomposition of $\mathrm{H}_2\mathrm{O}_2$ is

Which of the following statements is true?

- a. I is an intermediate.
- IO is a catalyst.
- $\overline{\text{c.}}$ The reaction is first order with respect to [I $\overline{\ }$].
 - The reaction is zero order with respect to [IT].
 - The reaction is second order with respect to $[H_2O_2]$.

31. At a given temperature, a first-order reaction has a rate constant of 2.5 \times 10 $^{-3}$ s

- 1. The time required for the reaction to be 65% completed is
- 75 s.
- b. 170 s.
- 180 s.
- 340 s. d.
- e.) 420 s.

step 1

32. A mechanism that explains the rate law, rate = $k[(CH_3)_3CO_2C(CH_3)_3]$, for the gas-phase thermal decomposition of di-tert-butyl peroxide is

$$(CH_3)_3C \longrightarrow CCH_3)_3 \longrightarrow 2(CH_3)_3C \longrightarrow Step 1$$
 $(CH_3)_3C \longrightarrow CH_3CCH_3 + CH_3$
 $Step 2$
 $CCH_3 \longrightarrow C2H_6$

For this reaction the rate-determining step(s) must be

- a.) step 1. step 2.
- step 2.
- c. step 3.
- d. 2 times step 2.
- e. step 1 + step 2 + step 3.

33. The rate law for the reaction between chlorine and nitric oxide,

$$2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$$

is rate = $k[NO]^2[Cl_2]$. Which of the following changes will alter the value of the specific rate constant, k?

- a. adding more NO to the reaction system
- b. adding more Cl₂ to the reaction system
- c. adding more NO and Cl_2 to the reaction system
- decreasing the volume of the reaction system
- e) running the reaction in a solvent rather than in the gas phase CMMGLI MECHANISM
- 34. When the concentrations of the reactants are increased, the rate of the reaction increases. This is best explained by the increase in the
 - a. activation energy.
 - frequency of the molecular collisions.
 c. rate constant.
 d. kinetic energy of the molecules.

 - e. potential energy of the molecules.