Ksp Worksheet 1. The $K_{\rm sp}$ for BaF₂ is 1.7×10^{-6} . What is the concentration of Ba²⁺ in a saturated solution of BaF₂? BaFz(s) = Bat + 2F Ksp = (Bat) [F] \times 2× 1.7×10⁻⁶ = [x][2x]² 1.7×10⁻⁶ = 4x³ X=[Ba27]= 7.5 X10-3 2. The $K_{\rm sp}$ for PbSO₄ is 1.8×10^{-8} . What is the concentration of SO₄²⁻ in a saturated solution of PbSO₄? KSP = [P627][SO,2] P65046) = P62+ 5042 1.8 ×10-8 = X2 SINCE (Pb2t) = (SU,2) X= 1.3 X10-4 3. What is the molar solubility of Ag₂CrO₄ in 0.20 M K₂CrO₄? The value of $K_{\rm sp}$ for Ag₂CrO₄ is 9.0×10^{-12} . Ag₂ CrO₄ © = 2 Ag₁ + CrO₄ $= K_{Sp} = [A_g + J^2] [CrO_4]$ $= (A_g + J^2) [CrO_4] = [Cr$ Fe (OH)3 (S) = Fe3+ +30H Ksp = [Fe3+] [OH-]3 6.3 x1038 = [Fe3+] [10-10] 3 POH= 10 FOHJ= 10 POH= 15-10 [Fe3+] = 6-3×10-8 5. What mass of Na_2SO_4 (molar mass = 142.0 g/mol) must be added to 225 mL of 0.33 M Ag^+ to initiate precipitation of Ag₂SO₄? The $K_{\rm sp}$ for Ag₂SO₄ is 1.7×10^{-5} . Assume no volume change occurs upon addition of 15 Ag 2 SO, (5) = 2 Ag + SOy KSp = [Ag +] [SOy] 1.7×10-5 = [0.33) = [502] [504] = 1.56×10-4 Then: 225 mx 1.56×10 mot 504 [1 mot Na, 504 142.09 = 5.0 ×10-3 May 504 1 mod 504]