

Show all work where possible.

The kinetic data shown below was collected for the reaction:

 $S_2O_8^{2-}(aq) + 3I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_3^{-}(aq)$ 

| 2 0 ( 17   | (-1)                                           | (4)    |                         |
|------------|------------------------------------------------|--------|-------------------------|
| Experiment | [S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> ] | [1]    | Initial rate (M/min)    |
| 1          | 0.0200                                         | 0.0155 | 1.15 x 10 <sup>-4</sup> |
| 2          | 0.0250                                         | 0.0200 | 1.85 x 10 <sup>-4</sup> |
| 3          | 0.0300                                         | 0.0200 | 2.22 x 10 <sup>-4</sup> |
| 4          | 0.0300                                         | 0.0275 | 3.06 x 10 <sup>-4</sup> |

a. (8 Pts) Determine the order of the reaction with respect to  $[S_2O_8^2]$  and [1]. Be sure to show setups

The general rate law is: rate = k[s208] /I-72

for 5200 case Emp 3: Exp 2: 2.22×10-4 = \$ [0.0300] [0.0200] [0.0200]

For I use  $\mathcal{E}_{XP}$  4 +  $\mathcal{E}_{XP}$  3:  $3.06 \times 10^{-4}$   $\mathcal{L}_{0.030}$  [0.0275]  $\mathcal{L}_{0.0205}$   $\mathcal{L}_{0.0205}$   $\mathcal{L}_{0.0205}$   $\mathcal{L}_{0.0205}$ 

and: rate = le [5204][I] 1.38 = (1.38) 2 SO(4=

b. (4 Pts) Calculate to value of the rate constant and determine its units.  $R = \frac{\text{rate}}{[52037][1]} = \frac{1.15 \times 10^{-9} \text{ min}}{[0.0200 \text{ M}][0.0155 \text{ K}]} = 0.37 \text{ min} = M$ 

- 2. Given the reaction:  $6l(aq) + BrO_3(aq) + 6H^+(aq) \rightarrow 3l_2(aq) + Br(aq) + 3H_2O(l)$ .
  - a. (4 Pts) Write a general rate law.

rate = & [I] [Bro] ] [H+] =

b. (3 Pts) What can be said about the order of the reaction with respect to [BrO<sub>3</sub>]?

Order can only be experimentally of

3. (3 Pts) Determine the units of the rate constant for the rate law: rate =  $k[A][B]^2$  if rate is measured in M/s.

R = FATED = 5 -1 M-2

(3 Pts) Given the rate law: rate = k[A][B]<sup>2</sup>

What would be the effect on the observed rate if the concentration of A is tripled and the concentration of B is doubled?

rate= &[3][2] = 12

a 12- fold increase in rate