1. What is the molar concentration of silver ion in a solution containing 1.3×10^{-4} M CrO_4^{2-} , saturated with Ag_2CrO_4 ? K_{sp} of $Ag_2CrO_4 = 9 \times 10^{-12}$.

$$A_{g_2}CrO_4 = 9 \times 10^{-12}.$$

$$A_{g_2}CrO_4 (s) \ge 2A_g^{\dagger} + CrO_4^{2-1}$$

$$K_{g_p} = [A_g^{\dagger}]^2 [CrO_4^{2-1}]$$

$$9 \times 10^{-12} = [A_g^{\dagger}]^2 [1.3 \times 10^{-4}]$$

$$[A_g^{\dagger}] = 2.63 \times 10^{-4}$$

2. What is the pH in a saturated solution of $Mg(OH)_2$ where $[Mg^{2+}] = 1.5 \times 10^{-5} M$? $K_{sp} Mg(OH)_2 = 1.5 \times 10^{-11}$.

$$M_{g}(OH)_{2}(S) = M_{g}^{2+} + 2OH^{-}$$
 $K_{sp} = [M_{g}^{2+}][OH]^{2}$
 $1.5 \times 10^{-11} = [1.5 \times 10^{-}5][OH]^{2}$
 $[OH^{-}] = 0.0010$
 $POH = 3.00$
 $POH = 11.00$

3. The solubility of BaCO₃ is 7.9×10^{-3} g·L⁻¹. Calculate the solubility product, $K_{\rm sp}$, ignoring hydrolysis.

Molar Mass of BaCO₃ = 197 g/mol.
Ba CO₃ (s)
$$\rightleftharpoons$$
 Ba $²$ + CO₃ $²$ 7.9×10^{-3} g/mol = 4.01 $\times 10^{-5}$
 $K_{5p} = [4.01 \times 10^{-5}]^2$
 $K_{5p} = [-61 \times 10^{-9}]$

4. Typical "hard" water contains about 2.0×10^{-3} mol of Ca^{2+} per liter. Calculate the maximum concentration of fluoride ion which could be present in hard water. K_{sp} of $CaF_2 = 4.0 \times 10^{-11}$

$$Ca F_{2}(s) = Ca^{2} + 2F$$

$$K_{SP} = [Ca^{2} + 1][F]^{2}$$

$$4.0 \times 10^{-11} = [2.0 \times 10^{-3}][F]^{2}$$

$$[F] = 1.4 \times 10^{-4}$$