Date:

1. The solubility of silver bromide can be increased by dissolving it in a solution containing the thiosulfate anion.

What is the value of the equilibrium constant for the overall reaction?

$$AgBr(s) + 2S_2O_3^{2-}(aq) \rightleftharpoons Ag(S_2O_3)_2^{3-}(aq) + Br^-(aq)$$

A) 3.6×10^{-9} B) 12.4×10^{13} C) 4.7 x 10⁻⁹ D) 4.7×10^{13}

Name: _____

- E) 36
- 2. Given the following information:

$$\begin{array}{ll} 2A(g) + B(g) &\rightleftharpoons A_2B(g) & K_{p1} \\ 2A(g) + C_2(g) &\leftrightarrows 2AC(g) & K_{p2} \\ 3/2A_2(g) + B(g) + C(g) &\leftrightarrows AC(g) + A_2B(g) & K_{p3} \end{array}$$

Which relationship represents the equilibrium constant for the reaction:

$$3A_2(g) + 3B(g) + 2C(g) \rightleftharpoons 3A_2B(g) + C_2(g) \quad K_{net} = ?$$

- A) $K_{net} = K_{p1} \times K_{p2} \times K_{p3}$
- B) $K_{net} = K_{p1} \times 2K_{p3} / K_{p2}$

- C) $K_{net} = K_{p1} K_{p2} + 2 K_{p3}$ D) $K_{net} = K_{p1} x K_{p3}^{2} / K_{p2}$ E) $K_{net} = K_{p1} x K_{p2} x K_{p3}^{2}$
- 3. 2.50 mol NOCl was placed in a 2.50 L reaction vessel at 400°C. After equilibrium was established, it was found that 28% of the NOCl had dissociated according to the equation

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g).$$

Calculate the equilibrium constant, K_c, for the reaction.

- A) 0.021
- B) 0.039
- C) 0.169
- D) 26
- E) 47

- 4. The brown gas NO₂ and the colorless gas N_2O_4 exist in equilibrium, $2NO_2 \rightleftharpoons N_2O_4$. In an experiment, 0.625 mole of N_2O_4 was introduced into a 5.00 L vessel and was allowed to decompose until equilibrium was reached. The concentration of N_2O_4 at equilibrium was 0.0750 M. Calculate K_c for the reaction.
 - A) 7.5
 - B) 0.125
 - C) 0.0750
 - D) 0.10
 - E) 0.050
- 5. At 700 K, the reaction 2SO₂(g) + O₂(g) ⇒ 2SO₃(g) has the equilibrium constant K_c = 4.3 × 10⁶, and the following concentrations are present: [SO₂] = 0.10 M; [SO₃] = 10. M; [O₂] = 0.10 M. Which of the following is true based on the above?
 A) O > K the reaction proceeds from left to right to reach equilibrium.
 - A) $Q_c > K_c$, the reaction proceeds from left to right to reach equilibrium D) $Q_c > K_c$, the reaction proceeds from left to right to reach equilibrium
 - B) $Q_c > K_c$, the reaction proceeds from right to left to reach equilibrium C) $Q_c < K_c$, the reaction proceeds from left to right to reach equilibrium
 - D) $Q_c < K_c$, the reaction proceeds from right to left to reach equilibrium
 - E) $Q_c = K_c$, the reaction is currently at equilibrium
- 6. Consider the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$. The production of ammonia is an exothermic reaction. Will heating the equilibrium system *increase* or *decrease* the amount of ammonia produced?
- 7. In the reaction $HSO_4^{-}(aq) + OH^{-}(aq) \rightleftharpoons SO_4^{2-}(aq) + H_2O(l)$, the conjugate acid-base pairs are

	pair l	pair 2
Α.	HSO ₄ ⁻ and SO ₄ ²⁻ ;	H ₂ O and OH ⁻ .
Β.	HSO ₄ ⁻ and H ₃ O ⁺ ;	SO ₄ ² ⁻ and OH ⁻ .
C .	HSO ₄ ⁻ and OH ⁻ ;	SO_4^2 - and H_2O_1 .
D.	HSO ₄ ⁻ and H ₂ O;	OH ⁻ and SO ₄ ²⁻ .
E.	HSO ₄ ⁻ and OH ⁻ ;	SO42- and H3O+

- A) A
- B) B
- C) C
- D) D
- E) E

- 8. The OH⁻ concentration in a 1.0×10^{-3} M Ba(OH)₂ solution is
 - A) 0.50×10^{-3} M.
 - B) 1.0×10^{-3} M.
 - C) 2.0×10^{-3} M.
 - D) 1.0×10^{-2} M.
 - E) 0.020 M.
- 9. A 0.14 M HNO₂ solution is 5.7% ionized. Calculate the H^+ ion concentration.
 - A) 8.0×10^{-3} M
 - B) 0.057 M
 - C) 0.13 M
 - D) 0.14 M
 - E) 0.80 M
- 10. Calculate the pH of a 3.5×10^{-3} M HNO₃ solution.
 - A) -2.46
 - B) 0.54
 - C) 2.46
 - D) 3.00
 - E) 3.46
- 11. A 2.1 L sample of a 0.23 M NaOH solution is mixed with 1.9 L of a 0.021 M KOH solution. What is the pH of the mixture?
 - A) 13.40
 - B) 13.12
 - C) 11.68
 - D) 12.84
 - E) 13.04
- 12. Given the following K_b values, which cation is the strongest acid?

Base	K _b
NH ₃	1.8×10^{-5}
$C_2H_5NH_2$	5.6 x 10 ⁻⁴
C_5H_5N	1.7 x 10 ⁻⁹
$C_8H_{10}N_4O_2$	5.3×10^{-14}
$(NH_2)_2CO$	1.5 x 10 ⁻¹⁴

- A) NH_4^+
- B) $C_2H_5NH_3^+$
- C) $C_5H_6N^+$
- D) $[C_8H_{11}N_4O_2]^+$
- $E) \quad \left[NH_2 NH_3 CO \right]^+$

- 13. Arrange the acids H_2Se , H_2Te , and H_2S in order of increasing acid strength.
 - $A) \quad H_2S < H_2Se < H_2Te$
 - $B) \quad H_2S < H_2Te < H_2Se$
 - $C) \quad H_2Te < H_2S < H_2Se$
 - D) $H_2Se < H_2S < H_2Te$
 - E) $H_2Se < H_2Te < H_2S$
- 14. Which one of these equations represents the reaction of a *weak acid* with a *weak base*?
 - A) $H^+(aq) + OH^-(aq) \rightarrow H_2O(aq)$
 - B) $H^+(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq)$
 - C) $OH^{-}(aq) + HCN(aq) \rightarrow H_2O(aq) + CN^{-}(aq)$
 - D) $HCN(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq) + CN^-(aq)$
- 15. Predict the direction in which the equilibrium will lie for the reaction

$$\begin{array}{l} H_{3}PO_{4}(aq) + HSO_{4}^{-}(aq) & \leftrightarrows H_{2}PO_{4}^{-}(aq) + H_{2}SO_{4}(aq). \\ K_{a1}(H_{3}PO_{4}) = 7.5 \times 10^{-3}; \ K_{a}(H_{2}SO_{4}) = very \ large \end{array}$$

- A) to the right
- B) to the left
- C) in the middle
- 16. Which of the following is both a Lewis Acid and Brønsted Acid?
 - A) BF₃
 - B) NH₃
 - C) CO₂
 - D) HNO₂
 - E) PCl₃
- 17. Which one of the following combinations cannot function as a buffer solution?
 - A) HCN and KCN
 - B) NH_3 and $(NH_4)_2SO_4$
 - C) HNO₃ and NaNO₃
 - D) HF and NaF
 - E) HNO₂ and NaNO₂

- 18. Which of the following yields a buffer solution when equal volumes of the two solutions are mixed?
 - A) $0.050 \text{ M H}_3\text{PO}_4 \text{ and } 0.050 \text{ M HCl}$
 - B) $0.050M H_3PO_4$ and 0.025 M HCl
 - C) $0.050M \text{ NaH}_2PO_4 \text{ and } 0.025M \text{ NaOH}$
 - D) $0.050M Na_3PO_4$ and 0.050M M NaOH
 - E) $0.050M \text{ Na}_3\text{PO}_4$ and 0.025M NaOH
- 19. Calculate the pH of a buffer solution prepared by dissolving 0.2 mole of sodium cyanate (NaCNO) and 1.0 mole of cyanic acid (HCNO) in enough water to make 1.0 liter of solution. $[K_a(HCNO) = 2.0 \times 10^{-4}]$
 - A) 0
 - B) 3.0
 - C) 3.7
 - D) 4.4
 - E) 5.0
- 20. Starting with 0.250L of a buffer solution containing 0.250 M benzoic acid (C₆H₅COOH) and 0.20 M sodium benzoate (C₆H₅COONa), what will the pH of the solution be after the addition of 25.0 mL of 0.100M HCl? (K_a (C₆H₅COOH) = 6.5 x 10⁻⁵)
 - A) 4.19
 - B) 4.10
 - C) 4.28
 - D) 4.05
 - E) 3.78
- 21. Acid dissociation constants for phosphoric acid are given below.

	K _{a1}	K _{a2}	K _{a3}
H_3PO_4	$7.5 imes 10^{-3}$	$6.2 imes 10^{-8}$	$4.8 imes 10^{-13}$

A buffer with a pH = 7.4 can best be made by using

- A) H_3PO_4 and NaH_2PO_4 .
- B) NaH_2PO_4 and Na_2HPO_4 .
- C) Na_2HPO_4 and Na_3PO_4 .
- D) only NaH₂PO₄.
- E) only Na_2HPO_4 .

- 22. 35.0 mL of a 0.250 M solution of KOH is titrated with 0.150 M HCl. After 35.0 mL of the HCl has been added, the resultant solution is:
 - A) Basic and before the equivalence point
 - B) Basic and after the equivalence point
 - C) Acidic and before the equivalence point
 - D) Acidic and after the equivalence point
 - E) Neutral and at the equivalence point
- 23. What is the pH at the equivalence point in the titration of 100 mL of 0.10 M HCN ($K_a = 4.9 \times 10^{-10}$) with 0.10 M NaOH?
 - A) 3.0
 - B) 6.0
 - C) 7.0
 - D) 11.0
 - E) 12.0

Answer Key

- 1. E
- 2. D
- 3. A
- 4. A
- 5. C

6. The amount of NH_3 produced will decrease.

- 7. A
- 8. C
- 9. A
- 10. C
- 11. B
- 12. E
- 13. A
- 14. D
- 15. B
- 16. D
- 17. C
- 18. C
- 19. B
- 20. D
- 21. B 22. A
- 22. A 23. D