

1. (3 Pts) For the overall chemical reaction shown below, which one of the following statements can be rightly assumed?

$$2H_2S(g) + O_2(g) \rightarrow 2S(s) + 2H_2O(l)$$

- A) The reaction is third-order overall.
- B) The reaction is second-order overall.
- C) The rate law is, rate = $k[H_2S]^2[O_2]$.
- D) The rate law is, rate = $k[H_2S][O_2]$.
- E) The rate law cannot be determined from the information given.
- 2. (4 pts) Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation:

$$2ClO_2(aq) + 2OH^-(aq) \rightarrow ClO_2^-(aq) + ClO_3^-(aq) + H_2O(l)$$

Under a certain set of conditions, the initial rate of disappearance of chlorine dioxide was determined to be 2.30×10^{-1} M/s. What is the initial rate of appearance of chlorite ion under those same conditions?

3. (4 Pts) The <u>first-order</u> decomposition, $A \rightarrow products$, has a rate constant of 0.150 s⁻¹. Starting with $[A]_0 = 0.350$ M, how much time is required for $[A]_t = 0.125$ M? (rate = k rate = k[A] rate = k[A]² $[A]_t = -kt + [A]_0$ $[n[A]_t = -kt + ln[A]_0$)

$$2m[0.125] = -0.150s^{-1}(t) + 2m[0.350]$$

 $(t = 6.865)$

4. (4 Pts) Concerning the rate law, Rate $= k[A]^2[B]$, what are appropriate units for the rate constant k? Assume the units for rate are M/s.

rate =
$$R$$
 CAJ^{2} CBJ
 $M = M^{2}M$
 S
 $Runite = S^{-1}M^{-2}$

5. (4 Pts) The reaction $A + 2B \rightarrow$ products has been found to have the rate law, rate = k[A] [B]². While holding the concentration of A constant, the concentration of B is increased from x to 3x. Predict by what factor the rate of reaction increases.

6. (6 Pts) Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation:

$$2ClO_2(aq) + 2OH^-(aq) \rightarrow ClO_2^-(aq) + ClO_3^-(aq) + H_2O(l)$$

A kinetic study of this reaction under a certain set of conditions yielded the data below.

Exp	$[ClO_2](M)$	[OH ⁻] (M)	rate (M/s)
1	0.0500	0.100	5.75 x 10 ⁻²
2	0.100	0.100	2.30×10^{-1}
3	0.100	0.0500	1.15 x 10 ⁻¹

