
CHM152 Quiz 1 25 Pts Fall 2017 Name:

Show all Work to Receive Credit

(ey

1. (8 Pts) Aspirin, C₉H₈O₄, slowly decomposes at room temperature by reacting with water in the atmosphere to produce acetic acid, HC₂H₃O₂, and 2-hydroxybenzoic acid, C₇H₆O₃ (this is why old bottles of aspirin often smell like vinegar):

$$C_9H_8O_4 + H_2O \rightarrow HC_2H_3O_2 + C_7H_6O_3$$

Concentration and rate data for this reaction are given below.

	$[C_9H_8O_4](M)$	$[H_2O](M)$	Rate (M/s)
1	0.0100	0.0200	2.4×10^{-13}
2	0.0100	0.0800	9.6×10^{-13}
3	0.0200	0.0200	4.8×10^{-13}

Write the rate law for this reaction and calculate k (be sure to include the correct units).

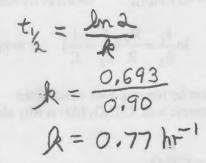
rate =
$$R [C_{9}H_{8}O_{4}]^{n} [H_{2}O]^{2}$$

for $C_{9}H_{8}O_{4} = \frac{3}{1} = \frac{4.8 \times 10^{-13}}{2.4 \times 10^{-13}} = \frac{4}{R} \left(\frac{0.0200}{0.0100} \right)^{n} \left(\frac{0.0200}{0.0200} \right)^{n}$
For $H_{2}O = \frac{2}{1} = \frac{9.6 \times 10^{-13}}{2.4 \times 10^{-13}} = \frac{14}{R} \left(\frac{0.0800}{0.0200} \right)^{n}$
rate = $R [C_{9}H_{8}O_{4}] [H_{2}O]^{4} = (4)^{2}$ $y = 1$ (First order)
 $R = \frac{2.4 \times 10^{-13}}{10000} = 1.2 \times 10^{-9} \text{ M}^{-1} \cdot 5^{-1}$

2. (2 Pts) Given the rate law for a reaction, rate = $k[A][B]^2$, where rate is measured in units of M s⁻¹, what are the units for the rate constant k?

$$k = \frac{M}{S} \frac{1}{M \cdot M^2} = M^{-2} \cdot S^{-1}$$

3. (5 Pts) A nuclear stress test utilizes a gamma-emitting radioisotope such as thallium-201 to follow the flow of blood through the heart – first at rest, and then under stress. The first-order rate constant for the decay of thallium-201 is 9.5 x 10⁻³ hr⁻¹. Calculate how long it takes for the amount of thallium-201 to fall to 5.0% of its original value.


$$ln \left(\frac{A}{A}\right)_{t} = -kt$$

$$ln \left(\frac{5}{100}\right) = -9.51 \times 10^{-3} t$$

$$t = 315 \text{ hr} (320 \text{ hr})$$

more on back -

4. (3 Pts) For the first-order reaction 2N₂O₅ → 2N₂O₄ + O₂ at a particular temperature, the half-life of N₂O₅ is 0.90 hr. Determine the value of the rate constant?

D.L.

- 5. (4 Pts) For the hypothetical reaction $A + 3B \rightarrow 2C$, the rate of appearance of C given by $(\Delta[C]/\Delta t)$ may also be expressed as
- also be expressed as A) $\Delta[C]/\Delta t = \Delta[A]/\Delta t$ B) $\Delta[C]/\Delta t = -(3/2) \Delta[B]/\Delta t$ C) $\Delta[C]/\Delta t = -(2/3) \Delta[B]/\Delta t$ D) $\Delta[C]/\Delta t = -(1/2) \Delta[A]/\Delta t$ rate $-\frac{\Delta[B]}{At} = \frac{\Delta[C]}{2\Delta t} = A(A)^{\times} [B)^{\times} [C]^{\times} [A]^{\times} [B)^{\times} [C]^{\times} [A]^{\times} [B)^{\times} [C]^{\times} [A]^{\times} [B]^{\times} [A]^{\times} [A]^{\times} [B]^{\times} [A]^{\times} [A]^$
- 6. (3 Pts) The reaction A + 2B → products has been found to have the rate law, rate = k[A] [B]². If the concentration of A is tripled and the concentration of B is doubled. Predict by what factor the rate of reaction increases.

rate
$$R[A][B]^2$$

[3][2]² = (12 Fold)