

Show all work to receive credit. $pH = pK_a + log ("base"/"acid")$

- 1. (3 Pts) A buffer of pH 4.1 is to be prepared from a weak acid and its salt. The best acid from which to prepare the
 - phthalic acid, $K_1 = 1.3 \times 10^{-3}$ (first ionization) (A)
 - hydrogen phthalate, $K_2 = 3.9 \times 10^{-5}$ (second ionization of phthalic acid) (B)

hydrocyanic acid, $K = 4 \times 10^{-10}$ (D)

2. (4 Pts) What is the pH in a 0.50 M solution of NH₃(aq)? $K_b = 1.8 \times 10^{-5}$

$$C_2 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_2 O \Rightarrow H C_2 H_3 O_2 + O H = K_8 = 10^{-14} / 1.8 \mu o^{-5} = 5.56 \times 10^{-10}$
 $C_3 H_3 O_2 + H_3 O_2 + H_3 O_2 + H_3 O_2 + H_3 O_3 + H_3 O$

4. (4 Pts) What is the [H⁺] of a solution which is 0.2 M in NaC₂H₃O₂ and 0.1 M in HC₂H₃O₂? $K_a = 1.8 \times 10^{-5}$ Buffer solution use HEH equation

5. (5 Pts) Enough water is added to 0.35 g of benzoic acid (molar mass = 122 g/mol) to make 1000 mL of solution. What is the pH? $K_a = 6.5 \times 10^{-5}$

What is the pH7
$$R_a = 6.5 \times 10^{3}$$

HBz + H20 \rightleftharpoons H30+ BZ

G,5 $\times 10^{-5} = \times 2$

Z 25%

I 2.9 $\times 10^{-3}$

C - \times

E 2.9 $\times 10^{-3}$

X \times

PH= 3.36 Should use Quad.

6. (4 Pts) What is the [OH-] of a solution which is 0.18 M in ammonium chloride (NH4Cl) and 0.10 M in ammonia

NH3+ H2O = NAy+ OH NH4Ce - NH+ + CE (NH_3) ? $K_b = 1.8 \times 10^{-5}$.

Buffer Solution

$$PH = -Log(10^{-14}/.8 \times 10^{-5}) + Log(0.10)$$
 $PH = 9.0$
 $POH = 5$
 $COHD = 10^{-5}$