Fall 2018 Quiz 5B 25 Pts CHM152

Name: Key (white)
$$pH = pK_a + \log\left(\frac{conj.base}{acid}\right)$$

Show all work to receive credit.

- 1. (2 Pts) Which of the following yields a basic solution when dissolved in water?
 - I. NH₃
 - II. Na₂Q
 - III. LiOH
 - IV. P₄O₁₀
 - A) I, II, and III
 - B) I and IV
 - C) I and II
 - D) II and III
 - E) I, II, III, and IV
- 2. (2 Pts) What is the pH of a 0.0055 M HA (weak acid) solution that is 8.2% ionized?

- 3. (2 Pts) Which one of the following combinations cannot function as a buffer solution?
 - A) HNO₃ and NaNO₃
 - B) HNO₂ and NaNO₂
 - C) HF and NaF
 - D) NH₃ and (NH₄)₂SO₄
 - E) HCN and KCN
- 4. (4 Pts) Calculate the pH of a buffer solution that contains 0.25 M benzoic acid (C₆H₅CO₂H) and 0.15M sodium benzoate (C₆H₅COONa). [K_a = 6.5×10^{-5} for benzoic acid]. You must first write a chemical equation showing the equilibrium reaction of interest.

PH= -Log 6.5 No-5 + Log 0.15 PH= 3.97 | C₆H₅Co₂H + H₂O ≥ H₃O⁺ + C₆H₅Co₂ | C₆H₅Co₂H + H₂O ≥ H₃O⁺ + C₆H₅Co₂

Key (white)

5. (4 Pts) Calculate the pH of a 0.021 M NaCN solution. $[K_a(HCN) = 4.9 \times 10^{-10}]$. You must first write a chemical equation showing the equilibrium reaction of interest.

write a chemical equation showing the equilibrium reaction of interest.

$$CN^{-} + H_{2}O \Rightarrow H_{2}CN + OH_{2}CN + V_{3}CN + V_{4}CN + V_{5}CN + V_$$

6. (4 Pts) What is the pH of a 0.20 M solution of NH₄Cl₂ [$K_b(NH_3) = 1.8 \times 10^{-5}$]. You must first write a chemical equation showing the equilibrium reaction of interest.

White a chemical equation showing the equation of interest.

$$NH_{4}^{+} + H_{20} \cong NH_{3} + H_{30}^{+} \times A = \frac{x^{2}}{0.20 - x}$$

$$X \times X \times X = 0.20 - x \times X \times X = 1.05 \times 10^{-5} = (H_{30}^{+})$$

$$K_{0} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$$

$$K_{0} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$$

$$K_{0} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$$

$$K_{0} = \frac{44.98}{1.8 \times 10^{-5}} = \frac{44.98}{1.8 \times 10^{-5}}$$

7. (3 Pts) Which of the following yields an acidic solution when dissolved in water?

I. NO_2 .

II. NH₄Cl

III. NaCl

IV. HNO₂

- A) I, II, III, and IV
- B) II and III
- C) I and III
- (D) I, II, and IV
- E) I and IV

8. (4 Pts) Calculate the pH of a solution that is 0.20M NH₃(aq) and 0.35 M NH₄Cl(aq). You must first write a chemical equation showing the equilibrium reaction of interest.

$$(K_{b}(NH_{3}) = 1.8 \times 10^{-5})$$
Basic Buffer sulution
$$NH_{3} + H_{2}O \rightleftharpoons NH_{4}^{+} + OH^{-}$$

$$0.35$$

$$K_{a} = \frac{10^{-144}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}$$

$$PH = -Log 5.56 \times 10^{-10} + Log \frac{0.20}{0.35}$$

$$PH = 9.01$$