1. (4 Pts) Calculate K_c for the reaction $2HI(g) = H_2(g) + I_2(g)$ given that the concentrations of each species at equilibrium are as follows: [HI] = 0.85 mol/L, $[I_2] = 0.60 \text{ mol/L}$, $[H_2] = 0.27 \text{ mol/L}$.

$$K_c = \frac{[H.][I_1]}{[HI]^2} = \frac{[0.27][0.60]}{[0.85]^2} = \frac{[0.224]}{[0.85]^2}$$

2. (4 Pts) The brown gas NO₂ and the colorless gas N₂O₄ exist in equilibrium, $2NO_2 \stackrel{\leftarrow}{\longrightarrow} N_2O_4$. In an experiment, 0.625 mole of N2O4 was introduced into a 5.00 L vessel and was allowed to decompose until equilibrium was reached. The concentration of N_2O_4 at equilibrium was 0.0750 M. Calculate K_c for the reaction.

$$K_{c}$$
 for the reaction.

 $INO_{2} \rightleftharpoons N_{2}O_{4}$
 $C + 2X = X$
 $C + 2X = 0.0750$
 $C +$

3. (3-Pts) The solubility of silver chloride can be increased by dissolving it in a solution containing ammonia.

AgCl (s)
$$\rightleftharpoons$$
 Ag (aq) + Cl⁻(aq) $K_1 = 1.6 \times 10^{-10}$
Ag⁺(aq) + 2NH₃ (aq) \rightleftharpoons Ag(NH₃)₂⁺(aq) $K_2 = 1.5 \times 10^7$

What is the value of the equilibrium constant for the overall reaction?

AgCl(s) + 2NH3 (aq)
$$\rightleftharpoons$$
 Ag(NH3)2+ (aq) + Cl (aq) K_{net} =?
The top 2 equations add up to Equation (3)
SO: Knet = K, xK2 = (2,4 × 10⁻³)

So:
$$K_{net} = K_1 \times K_2 = 2.4 \times 10^{-3}$$

4. (3 Pts) Write correct equilibrium constant expression for the following reaction?

Fe₂O₃(s) + 3H₂(g)
$$\rightleftharpoons$$
 2Fe (s) + 3H₂O (g)

$$K_{c} = \frac{[H_{2}O]^{3}}{[H_{2}]^{3}}$$

- more on back -

5. (4 Pts) At 700 K, the reaction $2SO_2(g) + O_2(g) \implies 2SO_3(g)$ has the equilibrium constant $K_c = 4.3 \times 10^{-4}$, and the following concentrations are present: $[SO_2] = 0.10 \text{ M}$; $[SO_3] = 10. \text{ M}$; $[O_2] = 0.10 \text{ M}$. Which of the following is true based on the above?

A) Q_c > K_c, the reaction proceeds from left to right to reach equilibrium

B) Q_c > K_c, the reaction proceeds from right to left to reach equilibrium

(C) Q_c < K_c, the reaction proceeds from left to right to reach equilibrium

 \overline{D} Q_c < K_c, the reaction proceeds from right to left to reach equilibrium

E) $Q_c = K_c$, the reaction is currently at equilibrium

$$Q_c = \frac{\left(50_3\right)^2}{\left(50_2\right)^2 \left(0_2\right)} = \frac{\left(10_1\right)^2}{\left[0.10\right]^2 \left[0.10\right]} = 1.0 \times 10^5 \quad Q_c < k_c$$
(need; more product)

6. (3 Pts) The equilibrium constant for the reaction Ni(s) + $4CO(g) \iff Ni(CO)_4(g)$ is 5.0×10^4 at 25° C. What is the equilibrium constant for the reaction $Ni(CO)_4(g) \iff Ni(s) + 4CO(g)$?

Since:
$$K_{c_1} = \frac{[N;(c_0)_4]}{[c_0]^4} = 5.0 \times 10^4$$

and $K_{c_2} = \frac{[c_0]^4}{[N;(c_0)_1]}$
 $K_{c_2} = \frac{1}{5.0 \times 10^4} = 2 \times 10^{-5}$

7. (4 Pts) The reaction A(g) + 2B(g) - C(g) was allowed to come to equilibrium. The initial amounts of reactants placed into a 5.00 L vessel were 1.0 mol A and 1.8 mol B. After the reaction reached equilibrium, 1.0 mol of B was found. Calculate K_c for this reaction.