A series of kinetics experiments were carried out and the rate constants at various temperatures were determined.

Rate constant (k) min ⁻¹	Temperature (K)	ln k	1/T (K ⁻¹)
0.000218	293		
2.00E-03	322		
0.004773	335		
0.013508	352		

The Arrhenius Equation: $\mathbf{k} = \mathbf{A} \mathbf{e}^{-\mathbf{E}_a/\mathbf{R}\mathbf{T}}$ (R = 8.314 J/(mol·K)

Take the ln of each side. ln k = ln A - Ea/RT In the y = b + mx form: ln k = ln A - $\frac{E_a}{R} \frac{1}{T}$ y = b - m x

Construct a Graph to determine the activation energy.