2. Write the expression for K_p for the reaction : $H_2(g) + Br_2(\ell) \rightleftharpoons 2 HBr(g)$

- 3. Write the expression for K_p for the reaction: $CO_2(g) + CaO(s) \rightleftharpoons CaCO_3(s)$
- 4. For the following reaction, $2 \text{ SO}_3(g) \rightleftharpoons 2 \text{ SO}_2(g) + \text{O}_2(g)$, the equilibrium constant, K_p , is 1.32 at 627°C. What is the equilibrium constant for the reaction below?

 $SO_3(g) \rightleftharpoons SO_2(g) + 1/2 O_2(g)$

5. The equilibrium constant (K_p) for the following reaction is 1.93×10^{-3} at a given temperature.

 $N_2(g) + 2 H_2O(g) \rightleftharpoons 2 NO(g) + 2 H_2(g)$

What is the equilibrium constant for the reaction below?

 $6NO(g) + 6H_2(g) \rightleftharpoons N_2(g) + 6H_2O(g)$

6. Nitrogen dioxide dimerizes to form dinitrogen tetraoxide: $2 \text{ NO}_2(g) \rightleftharpoons N_2O_4(g)$ Calculate the value of K_c , given that the gas phase equilibrium constant, K_p , for the reaction is 1.3 $\times 10^3$ at 273 K. ($R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$) 7. An equilibrium mixture of SO₃, SO₂, and O₂ at 1000 K contains the gases at the following concentrations: $[SO_3] = 0.41$ M, $[SO_2] = 0.032$ M, and $[O_2] = 0.59$ M. What is the equilibrium constant for the decomposition of SO₃?

 $2 \operatorname{SO}_3(g) \rightleftharpoons 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$

8. We place 0.064 mol N₂O₄(g) in a 4.00 L flask at 200. After reaching equilibrium, the concentration of NO₂(g) is 0.0030 M. What is K_c for the reaction below?

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

9. Carbonyl bromide decomposes to carbon monoxide and bromine: $COBr_2(g) \rightleftharpoons CO(g) + Br_2(g)$

 K_c is 0.190 at 73°C. If an initial concentration of 0.330 M COBr₂ is allowed to equilibrate, what are the equilibrium concentrations of COBr₂, CO, and Br₂?

10. Potassium hydrogen phthalate (KHP) is a weak acid that is used to standardize sodium hydroxide according to the net ionic equation below.

 $HC_8H_4O_4(aq) + OH(aq) \rightarrow H_2O(\ell) + C_8H_4O_4(aq)$

If 1.02 g KHP is titrated with 28.34 mL of NaOH, what is the concentration of NaOH?