CHM152 QUIZ #9 25 Pts Spring 2005 NAME:

Formulas: $\Delta G = \Delta H - T\Delta S$ $\Delta E = q + w$ $\Delta S^{\circ} = \sum n\Delta S_{f}^{\circ}(products) - \sum n\Delta S_{f}^{\circ}(reac \tan ts)$

 $\Delta H_{rxn}^{o} = \sum n\Delta H_{f}^{o}(products) - \sum n\Delta H_{f}^{o}(reactants)$

 $\Delta G^{\circ} = \sum n \Delta G_{f}^{\circ} (products) - \sum n \Delta G_{f}^{\circ} (reactants) \quad \Delta G = \Delta G^{\circ} + RT lnQ$

- 1. Which of the following substances is likely to have the highest standard entropy in the liquid state? BE SURE TO EXPLAIN YOUR REASONING.
 - a. CH₂Cl₂
 - b. CCL₄

c. CH3OH
d. C5H12 Largest structure hAs must possible disorder
e. C5H18

(Strethous, vubrating, etc.)

- 2. Of the following product-favored processes, which are endothermic?
 - 1, the combustion of methane to produce water and carbon dioxide

 - 2. the expansion of an ideal gas 3 the melting of ice at temperatures greater than 0°C.
- 3. Calculate the standard molar entropy change for the combustion of methane.

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

Species		S ^o (J/K·mol)	
CH ₄ (g)		186.3	-
$O_2(g)$		205.1	
$CO_2(g)$		213.7	
$H_2O(g)$		188.8	
a5° =	In Sprid	$-\sum u$	5°reect

- 4. Predict the signs of ΔH and ΔS for the evaporation of water at 35°C.
 - (a. $\Delta H > 0$ and $\Delta S > 0$)
 - b. $\Delta H > 0$ and $\Delta S < 0$
 - c. $\Delta H < 0$ and $\Delta S > 0$
 - d. $\Delta H < 0$ and $\Delta S < 0$

OH (+) DS (+) Endothermy more disorder

e. Not enough information is provided to answer this question.

- 5. The dissolution of ammonium nitrate occurs spontaneously in water. As NH₄NO₃ dissolves, the temperature of the water decreases. What are the signs of H, S, and G for this process?
 - a. $\Delta H < 0$, $\Delta S < 0$, $\Delta G < 0$
 - b. $\Delta H < 0, \Delta S > 0, \Delta G < 0$
 - c. $\Delta H < 0, \Delta S > 0, \Delta G < 0$
 - d.) $\Delta H > 0$, $\Delta S > 0$, $\Delta G < 0$
 - e. $\Delta H > 0$, $\Delta S < 0$, $\Delta G > 0$
- Endothermic SH = (+)
- Spon SG = (C)
 - US= (+)
- 6. Calculate ΔG_{pan} for the reaction below at 25.0°C

$$2 H_2S(g) + O_2(g) \rightarrow 2 H_2O(g) + S(s)$$

given
$$\Delta H_{pm}^* = -442.4 \text{ kJ}$$
, and $\Delta S_{pm}^* = -175.4 \text{ J/K}$.

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$= -442.4 k J - 298 K \left(-0.1754 k J\right) = -390 k J$$

7. Calculate ΔG_{ppn}^{*} for the reaction below at 25.0°C

$$2\;H_2O_2(\ell)\to 2\;H_2O(\ell)+O_2(g)$$

given
$$\Delta G_f[H_2O_2(\ell)] = -120.35 \text{ kJ/mol}, \Delta G_f[H_2O(\ell)] = -237.13 \text{ kJ/mol}, \Delta G_f[O_2(g)] = 0 \text{ kJ/mol}.$$

$$\Delta G = \sum nG_{prod} - \sum nG_{rend}$$

$$\Delta G_{prod} = \left[2(-237.13) + 0\right] - \left[2(-120.35)\right] = -233.56 \text{ kJ}$$

8. Calculate ΔG^{*} for the reaction below at 25.0°C.

$$4 \; Fe(s) + 3 \; O_2(g) \rightarrow 2 \; Fe_2O_3(s)$$

Species	$\Delta H_f^{\bullet}(\text{kJ/mol})$	$\dot{S_{f}}(J/K \cdot mol)$	
Fe(s)	0	27.78	
$O_2(g)$	0	205.14	
$Fe_2O_3(s)$	-824.2	87.40	
ΔH= (2 (-824.2)) -	$O = \frac{87.40}{-1648.4 \text{ kJ}} - 551.745$	
△S' =	(2(87.4)) -	(4(27.78) + 3(205.14) -	
4	16° = 0H'	- 7 As	
	= -164	0.4 RJ - 298 (-0.55174) RJ	
	S6° =	-1484. Jet	