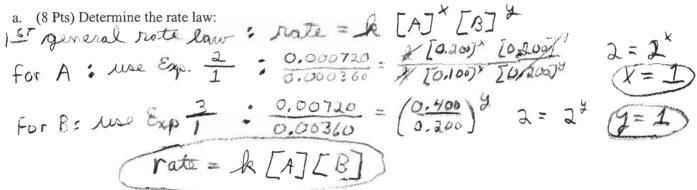
1.(4 Pts) Nitrogen monoxide reacts with chlorine at high temperature according to the equation,

2NO(g) + Cl2(g) → 2NOCl(g)


In a certain reaction mixture the rate of formation of NOCl(g) was found to be $4.50 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$. What is the rate of consumption of NO(g)?

.. They would have the same rate.

2.(4 Pts) The reaction, $2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$, was found to be first order in each of the two reactants and second order overall. What is the rate law?

3. For the reaction, $A + 2B \rightarrow C + 2D$, the following data were obtained

Experiment	[A] [B]	Rate (mol L^{-1} s ⁻¹)
1	0.100 0.200	0.000360
2	0.200 0.200	0.000720
3	0.100 0.400	0.000720

b. (5 Pts) Determine the value of the rate constant

Use data from any experiment: i.e. # 1 0.000360 M·5' = R [0.00][0.200] (0.018 M-1-5' = R)

4. (4 Pts) Nitric oxide reacts with bromine at elevated temperatures according to the equation

 $2 \text{ NO}(g) + \text{Br}_2(g) \rightarrow 2 \text{ NOBr}(g)$

The experimental rate law is rate = $k[NO][Br_2]$. In a certain reaction mixture the rate of formation of NOBr(g) was found to be $4.50 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$. What are the correct units for the rate constant in this case?

M = & M M \$ = 5 -1 . M -1 or L . mol -1 . 5 -1 1.(4 Pts) Nitrogen monoxide reacts with bromine at elevated temperatures according to the equation

 $2 \text{ NO}(g) + \text{Br}_2(g) \rightarrow 2 \text{ NOBr}(g)$

In a certain reaction mixture the rate of formation of NOBr(g) was found to be 4.50 x 10⁻⁴ mol L⁻¹ s⁻¹.

What is the rate of consumption of $Br_2(g)$?

$$-\Delta \begin{bmatrix} Br_2 \end{bmatrix} = \Delta \begin{bmatrix} NO8r \end{bmatrix} = \frac{4.50 \times 10^{-4}}{2} = \begin{bmatrix} 2.25 \times 10^{-4} & \text{mol·L}^{-1} & \text{s}^{-1} \end{bmatrix}$$

)

2.(4 Pts) The reaction, $2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$, was found to be first order in each of the two reactants and second order overall. What is the rate law?

rate = & [NO] [O]

For the reaction, $2 \times O + O_2 \rightarrow 2 \times O_2$, data obtained from measurement of the initial rate of reaction at varying concentrations are given below.

Experiment	[XO]	$[O_2]$	Rate (mmol L ⁻¹ s ⁻¹
1	0.010	0.010	2.5
2	0.010	0.020	5.0
3	0.030	0.020	45.0

- a. (8 Pts) Determine the rate law:

 1 St general rate law:

 For [X0] use exp. $\frac{3}{2}$ $\frac{45.0}{5.0}$ = $\frac{1}{2}$ [0.010]* [0.020]* $\frac{3}{2}$ $\frac{45.0}{5.0}$ = $\frac{1}{2}$ [0.010]* [0.020]* $\frac{3}{2}$ $\frac{45.0}{5.0}$ = $\frac{1}{2}$ [0.010]* [0.020]* $\frac{3}{2}$ $\frac{3}{2}$ $\frac{45.0}{5.0}$ = $\frac{1}{2}$ [0.010]* [0.020]* $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{45.0}{5.0}$ = $\frac{1}{2}$ [0.010]* [0.020]* $\frac{3}{2}$ $\frac{3}{2}$ rate = R [x0] 2 [02]
- b. (5Pts) Determine the value of the rate constant and its units.

use date from any experiment: i.e. #1 2.5 = A [0.010] = [2.5×10 mm-2.5]

4. (4 Pts) Nitric oxide reacts with bromine at elevated temperatures according to the equation

 $2 \text{ NO}(g) + \text{Br}_2(g) \rightarrow 2 \text{ NOBr}(g)$

The experimental rate law is rate = $k[NO][Br_2]$. In a certain reaction mixture the rate of formation of NOBr(g) was found to be $4.50 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$. What are the correct units for the rate constant in this case?

rate - & [NO] [Br.] M = R M M S = S · 1 · M - 1 or L · mol - 1 · S - 1