

Show work where possible

1. (6 Pts) What is the rate law that corresponds to the data shown for the reaction $2A + B \rightarrow C$? (Determine the order with respect to each reactant)

	Exp.	Initial [A]	Initial [B]	Initial rate
	1	0.015	0.022	0.125
* .	r 2	0.030	0.044	0.500
1/A -	3	0.060	0.044	0.500
	4	0.060	0.066	1.125

* A: Since there is no rate change for 2 &3, the ordered A 12 0.

$$\frac{0.500}{0.125} = \frac{(0.044)}{(0.021)}^{\times}$$
 $4 = 2$
 $x = 2$
 $x = 2$
 $x = 2$
 $x = 2$

2. (11 Pts) Aspirin, C₉H₈O₄, slowly decomposes at room temperature by reacting with water in the atmosphere to produce acetic acid, HC₂H₃O₂, and 2-hydroxybenzoic acid, C₇H₆O₃ (this is why old bottles of aspirin often smell like vinegar):

Concentration and rate data for this reaction are given below.

EXP	$[C_9H_8O_4](M)$	$[H_2O](M)$	Rate (M/s)
1	1 0.0100 y	0.0200 ¬	2.4×10^{-13}
2	∠0.0100	0.0800	9.6×10^{-13}
3	0.0200	0.0200 -	4.8×10^{-13}

Determine the rate law for this reaction and calculate k (be sure to include the correct units).

Determine the rate law for this reaction and calculate k (be sure to include the correct un for
$$C_9 H_8 O_4$$
 use $\frac{E \times P^3}{E \times P^2}$: $\frac{4.8 \times 10^{-13}}{2.4 \times 10^{-13}} = \left(\frac{0.0200}{0.0100}\right)^{\times} \times = 1$

For $H_2 O$ use $\frac{E \times P^2}{E \times P^2}$; $\frac{9.6 \times 10^{-13}}{2.4 \times 10^{-13}} = \left(\frac{0.0300}{0.0200}\right)^{\times}$ $y = 1$

3 (4 Pts) Given the rate law for a reaction, rate = $k[A][B]^2$, where rate is measured in units of M s⁻¹, what are the units for the rate constant k?

(4 Pts) Which one of the following is not a valid expression for the of the reaction below? **Explain your answer**.

$$4NH_3 + 7O_2 \rightarrow 4NO_2 + 6H_2O$$

a.
$$-\frac{\Delta[O_2]}{7\Delta t}$$
 b. $-\frac{\Delta[NO_2]}{4\Delta t}$ c. $\frac{\Delta[H_2O]}{6\Delta t}$ d. $-\frac{\Delta[NH_3]}{4\Delta t}$ e. rate = $k[NH_3]^*[O_2]^V$
 NO_1 is a product, should be positive

SHOW ALL WORK TO RECEIVE CREDT!

rate = k

$$rate = k[A]$$

$$rate = k[A]^2$$

$$[A]_t = -kt + [A]_0$$

$$ln[A]_t = -kt + ln[A]_0$$

$$1/[A]_t = kt + 1/[A]_0$$

$$t_{1/2} = [A]_0/2k$$

$$t_{1/2} = 0.693/k$$
 $t_{1/2} =$

$$t_{1/2} = [A]_0/2k$$
 $t_{1/2} = 0.693/k$ $t_{1/2} = 1/k[A]_0$ $ln\frac{k_1}{k_2} = \frac{E_a}{R}(\frac{1}{T_2} - \frac{1}{T_1})$ $e=mc^2$

1. (5 Pts) The reaction $2A + B \rightarrow products$ is second order with respect to A and zero-order with respect to B. Starting with 0.135 M of A, what is the concentration of A after 35 min if the rate constant is 0.11 M⁻¹s⁻¹?

rate = &
$$[A]^2 ZB^0 \Rightarrow rate = A[A]^2 \Big|_{ZAJ_t} = 0.11(35x60) + \frac{1}{[0.135]}$$

 $\frac{1}{[A]_t} = At + \frac{1}{[A]_0}$
 $[AJ_t = 4.2 \times 10^{-3} M$

2. (5 Pts) Nitrogen pentoxide decomposes by a first-order process yielding N₂O₄ and oxygen.

$$2N_2O_5 \rightarrow 2N_2O_4 + O_2$$

At a given temperature, the half-life of N₂O₅ is 0.90 hr. What is the first-order rate constant for N₂O₅ decomposition?

$$t_{8} = \frac{2m2}{R}$$

$$R = \frac{2m2}{0.90} = 0.77hr^{-1}$$

$$2.1 \times 10^{-4} s^{-1}$$

3. (5 Pts) Calculate the activation energy, in kJ/mol, for the redox reaction

Sn²⁺ + 2Co³⁺
$$\rightarrow$$
 Sn⁴⁺ + 2Co²⁺.

Temp (°C) k(1/M·s)
2 3.12 × 10³
27 27.0 × 10³

$$= \frac{3.12 \times 10^3}{27.0 \times 10^3} = \frac{E_a}{8.714} \left(\frac{1}{300} - \frac{1}{275} \right)$$

$$= \frac{1}{2} = \frac{59.200}{100} \text{ T/mol}$$

$$= \frac{1}{2} = \frac{59.200}{100} \text{ T/mol}$$

4. (5 Pts) The rate constant for the <u>first-order decomposition</u> of C_4H_8 at 500°C is 9.2×10^{-3} s⁻¹. How long will it take for 10.0% of a 0.100 M sample of C₄H₈ to decompose at 500°C?

$$\ln \frac{[A]_t}{[A]_0} = -At$$
 $\ln \frac{90}{100} = 9.2 \times 10^{-3} (t)$
 $t = 11.4 = 11 \text{ seconds}$

5. (5 Pts) Given that E_a for a certain biological reaction is 48 kJ/mol and that the rate constant is 2.5×10^{-2} s⁻¹ at 15°C, what is the rate constant at 37°C?

$$\frac{k_1}{2.5 \times 10^{-2}} = \frac{48 \times 10^{31}}{8.314} \left(\frac{1}{288} - \frac{1}{310} \right)$$

$$\ln \frac{k}{2.5 \times 10^{-2}} = 1.4226...$$

$$k = 0.104 5^{-1}$$