Show all work to receive credit.

1. (5 Pts) 5.00 mol of ammonia are introduced into a 5.00 L reactor vessel in which it partially dissociates at high temperatures.

 $2NH_3(g) \rightleftharpoons 3H_2(g) + N_2(g)$

At equilibrium at a particular temperature, 1.00 mole of ammonia remains. Calculate Kc for the

 $2NH_3 \Rightarrow 3H_2 + N_2$ $C_1 - 2x + 3x \times X$ $E_1 = 5.00 - 2x = 1.00 3x \times X$

X = 2 moles

 $K_{c} = 17.3$

2. (3 Pts) Given the following data for the reaction: $A(g) + 2B(s) \Rightarrow AB_2(g) + heat$

Temperature (K)	Kc
300	1.5×10^4
600	55
900	3.4×10^{-3}

Is the reaction endothermic or exothermic?

Explain your reasoning:

Exothermic

As temperature increased, the value of Ki decreased, meaning less products were formed.

3. (4 Pts) Consider the reaction, $N_2(g) + 3H_2(g) \implies 2NH_3(g)$. $K_c = 8.1 \times 10^{-3}$ at 900 K. What is the value of K_c for $NH_3(g) = \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$

$$K_{c_1} = \frac{[N+3]^2}{[N+3]^3}$$
 $K_{c_2} = \frac{[N+3]^3}{[N+3]} = \sqrt{\frac{1}{K_{c_1}}} = \sqrt{\frac{1}{8.1\times16^3}} = \sqrt{\frac{1}{11}}$

4. (2 Pts) Consider the reaction $N_2(g) + 3H_2(g) \implies 2NH_3(g)$. If nitrogen is removed from the system at equilibrium, what will happen to the hydrogen (H₂) concentration?

THE will increase.

5. (2 Pts) The data below refer to the following reaction:

$2NO(g) + Br_2(g)$	\rightleftharpoons 2NOBr(g)
--------------------	-------------------------------

2110(6) 1 12(6)	. 21100		
Concentration (M)	[NO]	$[Br_2]$	[NOBr]
Initial	2.5	5.0	1.0
Equilibrium	2.0		

Find the concentration of Br₂ when the system reaches equilibrium.

$$2N0 + Br_2 \ge 2N08r$$
 1.0
 2.5
 5.0
 1.0
 1.0
 1.0

$$E = 2.0 = 5.0 - x = 1.0 + 2x$$

$$E = 2.0$$
 5.0-x
 $2x = 0.5$ and $x = 0.25$ So For $Br_2 = 5.0 - 0.25 = 4.75$ M

6. (2 Pts) Consider the reaction $N_2(g) + 3H_2(g) \iff 2NH_3(g)$. If we use a catalyst, which way will the reaction shift?

7. (5 Pts) The data below refer to the following reaction: Refer to question 5.

$$2NO(g) + Br2(g) = 2NOBr(g)$$

$$Concentration (M) [NO] [Br2] [NOBr]$$
Initial 2.5 5.0 1.0
Equilibrium 2.0 4.75 $|+2$ X = 1.5

Calculate K_c.
$$[NOBr] = [NOBr] = [1.5]^{2}$$

$$[2.0]^{2}[Br2] = [2.0]^{2}[4.75] = [0.12]$$

8. (2 Pts) Consider the reaction $N_2(g) + 3H_2(g) \implies 2NH_3(g)$. The production of ammonia is an exothermic reaction. Will heating the equilibrium system increase or decrease the amount of ammonia produced?