CHM152

Ouiz 1a

25 Pts

Spring 2017 ***Show all work to receive credit***

Name:

rate = k

rate = k[A]

 $rate = k[A]^2$

 $[A]_t = -kt + [A]_0$

 $ln[A]_t = -kt + ln[A]_0$

R= 8.314 J/(mol•K)

$$1/[A]_t = kt + 1/[A]_0$$

$$t_{1/2} = [A]_0/2k$$

$$t_{1/2} = 0.693/k$$

$$t_{1/2} = 1/k[A]_0$$

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})$$

(5 Pts) Nitrogen pentoxide decomposes by a first-order process yielding N₂O₄ and oxygen. 1.

$$2N_2O_5 \rightarrow 2N_2O_4 + O_2$$

At a given temperature, the half-life of N₂O₅ is 0.90 hr. What is the first-order rate constant for

 N_2O_5 decomposition?

(5 Pts) At a certain temperature, the data below were collected for the reaction below. 2.

$$2IC1 + H_2 \rightarrow I_2 + 2HC1$$
.

Determine the rate law and the rate constant along with its units for the reaction.

	Initial conce	entrations (M)	Inital Rate of Formation of I ₂			
1	[ICI]	$[H_2]$	mol/L·s			
(<u>1</u>)	0.10	0.10	0.0015			
6	0.20	0.10	0.0030			
3	0.10	0.050	0.00075			

Rate law: General rate Law: rate = & [ICE] [H2]

b. Value of k and its units:

Value of k and its units:
$$A = \frac{rata}{[I(u)][H_3]} = \frac{0.0015}{[0.10][0.10]} = \frac{0.15 \text{ M}^{-1} \cdot \text{S}^{-1}}{[0.10][0.10]}$$

$$A = \frac{rata}{[I(u)][H_3]} = \frac{0.0015}{[0.10][0.10]} = \frac{0.15 \text{ M}^{-1} \cdot \text{S}^{-1}}{[0.10][0.10]} = \frac{0.15 \text{ M}^{-1}}{[0.10][0.10]} = \frac{0.15 \text{ M}^{-1}}{[0.10][0.10]} = \frac{0.15 \text{ M}^{-1}}{[0.10][0.10]} = \frac{0.15 \text{ M}^{-1}}{[0$$

3. (5 Pts) The rate constant for the first-order decomposition of C_4H_8 at 500°C is 9.2×10^{-3} s⁻¹. How long will it take for 10.0% of a 0.100 M sample of C_4H_8 to decompose at 500°C?

$$ln [A]_t = -let + ln [A]_0$$

or $ln [A]_t = -let + ln [A]_0$

or $ln [A]_t = -let + ln [A]_0$
 $t = -9.2 \times 10^{-3} \text{ s}^{-1}(t)$
 $t = 11.4 \text{ sec}$

4. (5 Pts) What is the rate law that corresponds to the data shown for the reaction $2A + B \rightarrow C$?

General	1 2 3 4	nitial [A] 0.015 0.030 0.060 0.060	Initial [B] 0.022 0.044 0.044 0.066	Initial rate 0.125 0.500 0.500 1,125 A T B		
for A use	2 4 3	· no	chana	e in rate	shows	order
for A use	Ø 7 3	, , , , ,		6 och 4		
for Buse	4:3	; [.13	500=1	0.044)		
•		۵.3	25 = 1	,5)4		
		en 2.25	= 40	n1-5	2=1	
Ý	ate	= k	[BJ)			

5. (5 Pts) A nuclear stress test utilizes a gamma-emitting radioisotope such as thallium-201 to follow the flow of blood through the heart – first at rest, and then under stress. The first-order rate constant for the decay of thallium-201 is 9.5 x 10⁻³ hr⁻¹. Calculate how long it takes for the amount of thallium-201 to fall to 5.0% of its original value.

of thallium-201 to fall to 5.0% of its original value.

$$\ln (A)_{t} = -kt + \ln (A)_{0}$$

$$\ln \frac{(A)_{t}}{(A)_{0}} = -kt$$

$$\ln (\frac{5}{100}) = -9.5 \times 10^{-3} \text{ hr} (t)$$

$$\ln (\frac{5}{100}) = 315 \text{ hr}$$