CHM152 Quiz 1 25 Pts Spring 2018 Name: Key Show all Work to Receive Credit

rate =
$$k$$
 rate = $k[A]$ rate = $k[A]^2$

$$rate = k[A]^2$$

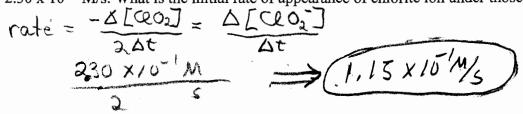
$$[A]_t = -kt + [A]_0$$

$$ln[A]_t = -kt + ln[A]_0$$
 R= 8.314 J/(mol•K)

$$1/[A]_{t} = kt + 1/[A]_{0}$$

$$t_{1/2} = [A]_0/2k$$

$$t_{1/2} = 0.693/k$$


$$t_{1/2} = 1/k[A]$$

$$1/[A]_t = kt + 1/[A]_0 \qquad t_{1/2} = [A]_0/2k \qquad t_{1/2} = 0.693/k \qquad t_{1/2} = 1/k[A]_0 \qquad \ln\frac{k_1}{k_2} = \frac{E_a}{R}(\frac{1}{T_2} - \frac{1}{T_1}) \qquad e = mc^2$$

- 1. (4 Pts) Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation:

$$2\text{ClO}_2(\text{aq}) + 2\text{OH}^-(\text{aq}) \rightarrow \text{ClO}_2^-(\text{aq}) + \text{ClO}_3^-(\text{aq}) + \text{H}_2\text{O}(\text{l})$$

Under a certain set of conditions, the initial rate of disappearance of chlorine dioxide was determined to be 2.30 x 10⁻¹ M/s. What is the initial rate of appearance of chlorite ion under those same conditions?

a.
$$\Delta[C]/\Delta t = -(1/2) \Delta[A]/\Delta t$$

b.
$$\Delta[C]/\Delta t = \Delta[A]/\Delta t$$

c.
$$\Delta[C]/\Delta t = -(3/2) \Delta[B]/\Delta t$$

d. $\Delta[C]/\Delta t = -(2/3) \Delta[B]/\Delta t$

$$rate = \frac{-\Delta[A]}{\Delta t} = \frac{-\Delta[B]}{3\Delta t} = \frac{\Delta[B]}{3\Delta t}$$

$$50 \frac{\Delta C}{\Delta t} = -\frac{3\Delta C}{\Delta t} = -\frac{2\Delta C}{3\Delta t}$$

3. (2 Pts) Given the rate law for a reaction, rate = $k[A]^2 [B]^2$, where rate is measured in units of M s⁻¹, what are the units for the rate constant k?

$$A = \frac{\text{rata}}{[A7^2][B^2]} = \frac{M}{5} \frac{1}{M^{2}} = \frac{1}{5} \frac{1}{M^2} = \frac{1}{5} \frac{1}$$

4. (4 Pts) The reaction $A + 2B \rightarrow \text{products}$ was found to follow the rate law: rate = k[A]²[B]. Predict by what factor the rate of reaction will increase when the concentration of A is doubled, the concentration of B is tripled, and the temperature remains constant.

******More questions on back

5. Aspirin, C₉H₈O₄, slowly decomposes at room temperature by reacting with water in the atmosphere to produce acetic acid, HC₂H₃O₂, and 2-hydroxybenzoic acid, C₇H₆O₃ (this is why old bottles of aspirin often smell like vinegar):

$$C_9H_8O_4 + H_2O \rightarrow HC_2H_3O_2 + C_7H_6O_3$$

Concentration and rate data for this reaction are given below.

$[C_9H_8O_4] (M) \qquad [H_2O] (M) \qquad \text{Rate } (M/s)$
0.0100 0.0200 2.4×10^{-13}
$2 0.0100 0.0800 9.6 \times 10^{-13}$
3 0.0200 0.0200 4.8×10^{-13}
3 0.0200 0.0200 4.8 × 10-13 General rate Law: rate = & [C9 H80] × [H20] × (6 Pts) Determine the rate law for the reaction
a. (6 Pts) Determine the rate law for the reaction.
Exe3 4.8 ×10-13 - 10 (0.0200) (0.200)
a. (6 Pts) Determine the rate law for the reaction. For: $C_9 H_8 O_4$ we $\frac{E \times p3}{E \times p1}$ $\frac{4.8 \times 10^{-13}}{2.4 \times 10^{-13}} = 0$ $\frac{0.0200}{0.0100} \times \frac{0.2080}{0.0100}$
$\lambda = 2^{\times} \times = 1$
(0,0198) (0,0800)
For: H ₂ 0 use $\frac{\text{Exp2}}{\text{Exp1}}$ $\frac{9.6 \times 10^{-13}}{2.4 \times 10^{-13}} = \frac{4}{3} \left(\frac{0.0100}{0.0200} \right)^{3}$ $\frac{4}{2} = 4$ $\frac{4}{3} = 4$
2,4 × 10
4=4
rate = & [C9 H804] [H20]
b. (2 Pts) Determine the value of the rate constant and its units.
use any Exp. $R = \frac{\text{rate}}{[C_9 H_8 O_4)[H_2 O]} = [1.2 \times 10^{-9} \text{ M}^{-1}.5^{-1}]$

6. (4 Pts) Use the following data to determine the rate law for the reaction shown below.

 $2NO + H_2 \rightarrow N_2O + H_2O$ Expt. # $[NO]_0$ $[H_2]_0$ Initial rate 0.065 1.46 M/min 1 0.021 2 0.021 0.260 1.46 M/min 0.042 0.065 5.84 M/min General rate Law: rate = & 4 = 2 x = 2 since rate does not change y = 0