CHM152 Quiz 2a 25 Pts Spring 2018 Name:
Show all Work to Receive Credit
rate = k rate = k[A] rate = k[A]² [A]_t = -kt + [A]₀ ln[A]_t = -kt + ln[A]₀ R = 8.314 J/(mol•K)
1/[A]_t = kt + 1/[A]₀ t_{1/2} = [A]₀/2k t_{1/2} = 0.693/k t_{1/2} = 1/k[A]₀ ln
$$\frac{k_1}{k_2} = \frac{E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})$$
 e=mc²
1. (5 Pts) Calculate the activation energy, in kJ/mol, for the redox reaction
Sn²⁺ + 2Co³⁺ \rightarrow Sn⁴⁺ + 2Co²⁺.
Temp (°C) k(1/M·s)
2 3.12 × 10³
27 27.0 × 10³
 $M = \frac{k_1}{R_2} = \frac{E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})$
 $M = \frac{3.12 \times 10^3}{R_2} = \frac{E_a}{R_2} (\frac{1}{T_2} - \frac{1}{T_1})$

$$\ln \frac{1}{27.0 \times 10^3} = \frac{1}{8.314} (300 \ 275)$$

$$F_a = 59207 \text{ Truel} \approx 59.2 \text{ J/mal}$$

2. (4 Pts) A certain reaction $A \rightarrow products$ is <u>second</u> order with respect to A. If it takes 45 min to reduce the concentration of A from 0.350 M to 0.125 M, what is the rate constant for this reaction?

$$\frac{1}{[A]_{t}} = Rt + \frac{1}{[A]_{0}}$$

$$\frac{1}{(A)_{t}} = R(45min) + \frac{1}{(A)_{0}}$$

$$R = 1.1 \times 10^{-1} \text{ M}^{-1} \text{ min}^{-1}$$

.

3. (6 Pts) Given that E_a for a certain biological reaction is 48 kJ/mol and that the rate constant is $2.5 \times 10^{-2} \text{ s}^{-1}$ at 15°C, what is the rate constant at 37°C?

$$ln \frac{A_{1}}{A_{2}} = \frac{\epsilon_{a}}{R} \left(\frac{1}{12} - \frac{1}{11} \right)$$

$$ln \frac{A_{1}}{2.5 \times 10^{-2}} = \frac{48 \times 10^{3} \text{ T/my}}{8.314 \text{ T/my}} \left(\frac{1}{288} - \frac{1}{310} \right)$$

$$ln \frac{A_{1}}{2.5 \times 10^{-2}} = 1.422 \dots$$

$$\frac{A_{1}}{2.5 \times 10^{-2}} = 0.10 \text{ s}^{-1}$$

MORE QUESTIONS ON BACK.

4. (6 Pts) The isomerization of cyclopropane to form propene is a first-order reaction.

a. At 760 K, 15% of a sample of cyclopropane changes to propene in 6.8 min. What is the rate constant at 760 K?

b. What is the half-life at 760 K?

5. (4 Pts) The first-order decomposition, $A \rightarrow products$, has a rate constant of 0.150 s⁻¹. Starting with $[A]_0 = 0.350 \text{ M}$, how much time is required for $[A]_t = 0.125 \text{ M}$?

$$\ln [A]_{t} = -Rt + \ln [A]_{0}$$

$$\ln [0.125] = (-0.1505)t + \ln [0.350]$$

$$t = 6.865$$