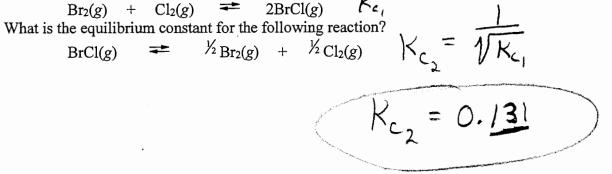
(4 Pts) A mixture 0.500 mole of carbon monoxide and 0.400 mole of bromine was placed into a rigid 1.00-L container and the system was allowed to come to equilibrium. The equilibrium concentration of COBr₂ was 0.233 *M*. What is the value of K_c for this reaction?

2. $(4 \text{ Pts}) N_2(g) + O_2(g) \neq 2NO(g)$ $K_c = 4.8 \times 10^{-31}$ $2\text{NOBr}(g) \neq 2NO(g) + Br_2(g)$ $K_c = 0.50$ Given the above a equilibrium constant data at 25 °C, what is the value of K_c at this temperature for the reaction $2\text{NOBr}(g) \neq N_2(g) + O_2(g) + Br_2(g)?$ $2\text{NOBr}(g) \neq N_2(g) + O_2(g)$ $K_g = 4.8 \times 10^{-31}$ $2 \text{ NO Br}(g) \neq N_2(g) + O_2(g)$ $K_g = 6.50$ $2 \text{ NO Br}(g) \neq 2 \text{ NO}(5) + Br_2(g)$ $SU: K_c = 6.50$ $K_{c3} = K_{c-1} \cdot K_c$ $K_{c3} = 4.8 \times 10^{-31}$


3. (3 Pts) Write the mass-action expression, K_c , for the following chemical reaction.

$$MgO(s) + SO_2(g) + \frac{1}{2}O_2(g) = MgSO_4(s)$$

$$K_c = \underbrace{\left[\le O_3 \right] \left[O_2 \right]^{\frac{1}{2}}}_{\left[\le O_2 \right] \left[SO_2 \right]^{\frac{1}{2}}}$$

More questions on back

4. (4 Pts) The equilibrium constant for the reaction of bromine with chlorine to form bromine monochloride is 58.0 at a certain temperature.

5. (3 Pts) Write the mass-action expression, K_c , for the following chemical reaction equation.

$$K_{c} = \frac{\left[Co_{2}\right]^{12}}{\left[C_{6}H_{6}\right]^{2}} \left[O_{2}\right]^{15}}$$

6. (4 Pts) At 450°C, tert-butyl alcohol decomposes into water and isobutene.

* $(CH_3)_2CCH_2(g) + H_2O(g)$ $(CH_3)_3COH(g)$

A reaction vessel contains these compounds at equilibrium. What will happen if the volume of the container is reduced by 50% at constant temperature?

- A) The forward reaction will proceed to reestablish equilibrium.
- B) The reverse reaction will proceed to reestablish equilibrium. Increased Pressure
 C) No change occurs.
 D) The equilibrium constant will increase.

gas.

 $H_2(g)$

- D) The equilibrium constant will increase.
- The equilibrium constant will decrease. E)
- 7. (3 Pts) The equilibrium constant, K_p , for the reaction

$$+ I_2(g) \implies 2HI(g)$$

- is 55.2 at 425°C. A rigid cylinder at that temperature contains 0.127 atm of hydrogen,
- 0.134 atm of iodine, and 1.055 atm of hydrogen iodide. Is the system at equilibrium? A) Yes.
- B) No, the forward reaction must proceed to establish equilibrium.
- C) No, the reverse reaction must proceed to establish equilibrium.
- D) Need to know the volume of the container before deciding.
- Need to know the starting concentrations of all substances before deciding. E)

$$Q = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = \frac{[1.055]^{2}}{[0.127][0.134]} = 65.4$$

$$65.4 = 755.2$$

$$Q = \frac{[K_{2}]^{2}}{[0.127][0.134]} = 65.4$$