ANSWERS AT END

- 1. The gas phase reaction $A + B \rightarrow C$ has a reaction rate which is experimentally observed to follow the relationship Rate = $k[A]^2[B]$. The overall order of the reaction is?
- 2. The units of the rate constant for a second order reaction can be? (use t for time)
- 3. A reaction is first order in X and second order in Y. Tripling the initial concentration of X and cutting the initial concentration of Y to three-fourths its previous concentration at constant temperature causes the initial rate to (increase or decrease) _____ by a factor of ____.
- 4. Consider the following rate data for the reaction below at a particular temperature.

$$2A + 3B \rightarrow Products$$

Experiment	Initial [A]	Initial [B]	Initial Rate of Loss of A
1	0.10 M	0.30 M	7.20 x 10^{-5} $M \cdot s^{-1}$
2	0.10 M	0.60 M	$1.44 \times 10^{-4} M \cdot s^{-1}$
3	0.20 M	0.90 M	$8.64 \times 10^{-4} M \cdot s^{-1}$

The reaction is order in A and order in B.

5. Determine the rate-law expression for the reaction below. $2A + B_2 + C \longrightarrow A_2B + BC$

	Z			
				Initial Rate of
Trial	Initial [A]	Initial [BO]	Initial [C]	Formation of BC
1	0.20 M	0.20 M	0.20 M	2.4 x 10-6 M·min-1
2	0.40 M	0.30 M	0.20 M	$9.6 \times 10^{-6} M \cdot min^{-1}$
3	0.20 M	0.30 M	0.20 M	$2.4 \times 10^{-6} M \cdot min^{-1}$
4	0.20 M	0.40 M	0.40 M	$4.8 \times 10^{-6} M \cdot min^{-1}$

- 6. The decomposition of dimethylether at 504°C is first order with a half-life of 1570 seconds. What fraction of an initial amount of dimethylether remains after 4710 seconds?
- 7. The gas phase reaction 3C + 2D \rightarrow E + F obeys the rate-law expression Rate = k[D] and has a half-life of 0.860 s⁻¹. If 2.00 mole of D is injected into a 1.00-L container with excess C, what concentration of D remains after 1.50 seconds?

- 8. The decomposition of dinitrogen pentoxide obeys the rate-law expression Rate = 0.080 min⁻¹ [N_2O_5]. If the initial concentration of N_2O_5 is 0.30 M_r , what is the concentration after 2.6 minutes?
- 9. Consider the following proposed mechanism. If this mechanism for the overall reaction were correct, and if k_1 were much less the k_2 , then what would the observed rate law would be?

$$2A \xrightarrow{k_1} C + I$$

$$I + B \xrightarrow{k_{21}} C + D$$

10. Consider the reaction below and its observed rate law expression. Which proposed mechanisms are consistent with the rate law expression?

$$2NO_2 \rightarrow 2NO + O_2$$
 Rate = $k[NO_2]^2$

I.
$$NO_2 + NO_2 \rightarrow N_2O_4$$
 slow $N_2O_4 \rightarrow N_2 + 2O_2$ fast $N_2 + O_2 \rightarrow 2NO$ fast

$$\begin{array}{ccccccc} \text{II.} & \text{NO}_2 & \rightarrow \text{N} + \text{O}_2 & \text{slow} \\ & \text{NO}_2 + \text{N} & \rightarrow \text{N}_2\text{O}_2 & \text{fast} \\ & \text{N}_2\text{O}_2 \rightarrow 2\text{NO} & \text{fast} \end{array}$$

III.
$$NO_2 \rightarrow NO + O$$
 slow $O + NO_2 \rightarrow NO + O_2$ fast

- 11. Calculate the activation energy of a reaction if the rate constant is 0.75 s⁻¹ at 25°C and 11.5 s⁻¹ at 75°C.
- 12. The specific rate constant, k, for a reaction is $2.64 \times 10^{-2} \text{ s}^{-1}$ at 25°C , and the activation energy is 74.0 kJ/mol. Calculate k at 50°C .

ANSWERS:

1. is third 2. $M^{-1}s^{-1}$ 3. increase, 1.69 4. second, first 5. rate = $k[A]^{2}[C]$ 6. 1/8 7. 0.60 M 8. 0.24 M 9. rate = $k_{1}[A]^{2}$ 10. I 11. d) 47.1 kJ 12. c) 0.266 s⁻¹